
2026/01/14 03:30 1/2 后缀自动机（姬）

CVBB ACM Team - https://wiki.cvbbacm.com/

后缀自动机（姬）

算法思想

后缀自动机简称 SAM 。

我们记 \sum 为字符集， $|\sum|$ 为字符集大小。

以下问题可以通过 SAM 在线性时间内解决。

1.在另一个字符串中搜索一个字符串的所有出现位置。（ kmp 、哈希也可以）

2.计算给定的字符串中有多少个不同的子串。（后缀数组也可以线性做）

在直观上，我们可以把 SAM 理解为将字符串的所有子串压缩在一个树上。对于长度为 n 的字符串，
SAM 的空间复杂度是 $O(n)$ 的，此外构造 SAM 的时间复杂度也是 $O(n)$ 的，小结论：一个
SAM 最多有 $2n-1$ 个结点和 $3n-4$ 条转移边。

我们把结点称作状态，边称为状态之间的转移。我们有一个初始的源点作为初始状态，其他各个结点都可
以从这个源点出发到达。每个转移都标有一些字母，从一个结点出发的所有转移都不同。存在一个或多个
终止状态，路径上所有转移连接起来一定是字符串的一个后缀，并且每一个后缀都可以用一条从源点到终
止状态的路径构成。所以子串就是后缀的前缀也就是从源点开始到任意一个点的路径，所以可以说一个点
对应着一个原字符串的子串。

结束位置 $endpos$ ：考虑字符串 s 的任意非空子串 t ，我们记 $endpos(t)$ 为在字符串 s 中 t
的所有结束位置（从 0 开始），比如现在有一个字符串叫 $abcbc$ ，我们有 $endpos("bc")=2,4$ 。不同
子串 t_{1} 和 t_{2} 的 $endpos$ 集合可能相等，比如刚才的 c 和 bc ，所以我们可以根据
$endpos$ 集合的不同将 s 的非空子串分为若干等价类。

SAM 中的每个状态对应一个 $endpos$ 相同的等价类，还有一个初始状态，所以 SAM 的状态个数等
于等价类的个数 $+1$ 。

假设字符串 s 的两个非空子串 u 和 v 的 $endpos$ 相同，显然有短的字符串是长的字符串的后缀。
$endpos$ 之间要么相交是空（不为后缀关系），要么是被包含的关系（其中一个是另一个的后缀），且
满足这个等价类的子串的长度是一个连续的区间。

后缀链接 $link(v)$ 连接到对应于比 v 等价类最短的还短一个字符的字符串的等价类。所有的后缀链接
构成一棵根节点为 t_{0} 的树。如果我们从任意状态 v_{0} 开始沿着后缀链接遍历，总会到达初始
状态 t_{0} ，这种情况会得到一个互不相交的区间 $[minlen(v_{i}),len(v_{i})]$ ，并且他们的并集正好
是 $ [0,len(v_{0})]$ 。

后缀自动机的构造是在线的，我们可以逐个加入字符串的每个字符，并且每一步维护 SAM 。我们为了保
证线性的空间复杂度，只保存 len 和 $link$ 的值和每个状态的转移列表，不会标记终止状态。一开始
SAM 只包含一个状态 t_{0} ，编号为 0 ，为了方便我们规定 t_{0} 的 $len=0,link=-1$ （ -1 表
示虚拟状态）。现在我们开始插入字符：令 $last$ 为添加字符 c 之前，整个字符串对应的状态（每次
的最后一步都会更新这个值）。创建一个新的状态 cur （因为整个字符串一定是第一次出现的），并将
$len(cur)$ 赋值为 $len(last)+1$ ，这时 $link(cur)$ 的值还未知。

从状态 $last$ 开始，如果没有字符 c 的转移，我们就添加一个到状态 cur 的转移，遍历后缀链接，
如果在某个点已经存在到字符 c 的转移，我们就停下来，并将这个状态标记为 p 。

如果没有找到这个 p ，则到达了 -1 ，此时我们将 $link(cur)$ 赋值为 0 并退出。

Last
update:
2021/07/29
00:27

2020-2021:teams:legal_string:
王智彪:后缀自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%90%8E%E7%BC%80%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627489653

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:30

如果找到了，且我们知道经过字符 c 转移后的状态为 q ，现在分情况进行讨论：

如果 $len(p)+1=len(q)$ ，我们只需要将 $link(cur)$ 赋值为 q 并退出。

否则我们需要复制 q ，我们创建一个新的状态 $clone$ ，复制 q 除了 len 的值之外的所有信息（包
括后缀链接和转移），然后将 $len(clone)$ 赋值为 $len(p)+1$ 。之后我们将 $link(cur)$ 指向 $clone$ ，
也将 $link(q)$ 指向 $clone$ 。这样就是 q 发现了一个介于原来两个之间的状态，于是需要把 $link(q)$
指向 $clone$ 。

无论哪种情况，最后我们都将 $last$ 的值更新为 cur 。

这里遍历后缀链接的原因是：我们创建了一个新的状态之后，对后缀链接这些状态进行遍历，尝试添加通
过一个字符 c 到新状态 cur 的转移，但是我们不能覆盖之前的合法转移，当没有找到时，说明这个字
符从未出现过，所以后缀链接为 0 。如果出现了，说明我们正在向自动机内添加一个已经存在了的子串，
如果存在 $len(q)=len(p)+1$ ，说明之前已经有一个状态的转移是一样的，直接连到转移后的就可以了；
如果不存在，说明转移是不连续的，即 q 不仅对应于长度为 $len(p)+1$ 的后缀，还对应着更长的子串，
就需要拆开状态 q 来创建这样的状态。但是这样还没完，我们需要把一些本来转移到 q 的转移重定
向到 $clone$ ，我们需要继续沿着后缀链接遍历，从结点 p 直到 -1 或者转移到不是状态 q 的一个
转移。

因为我们只为 s 的每个字符创建了一个或者两个新状态，所以 SAM 只包含线性个状态。

算法实现

如果你用 map 存储转移列表，时间复杂度会变成 $O(nlog|\sum|)$ ，当字符集为较小的常数，比如 26
时，就将转移数组设为 $int[26]$ 即可。

给 SAM 赋予树形结构，树的根为 0 ，其余结点 v 的父亲为 $link(v)$ 。则 $S_{1…p}$ 和
$S_{1…q}$ 的最长公共后缀对应的字符串就是 v_{p} 和 v_{q} 对应的 LCA 的字符串。显然每个
状态对应的子串种类数是 $len(i)-len(link(i))$ 。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%90%8E%E7%BC%80%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627489653

Last update: 2021/07/29 00:27

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%90%8E%E7%BC%80%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627489653

	后缀自动机（姬）
	算法思想
	算法实现

