
2026/01/14 03:29 1/2 序列自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

序列自动机

算法思想

序列自动机是接受且仅接受一个字符串的子序列的自动机。字符串设为 s 。

若 s 包含 n 个字符，那么序列自动机包括 $n+1$ 个状态。

令 t 是 s 的一个子序列，则 $d(start,t)$ 是 t 在 s 第一次出现时末端的位置。

也就是说，一个状态 i 表示前缀 $s[1…i]$ 的子序列与前缀 $s[1…i-1]$ 的子序列的差集。

序列自动机上的所有状态都是接受状态。

$d(u,c)=min\{i|i>u,s[i]=c\}$ ，也就是字符 c 下一次出现的位置。因为若 $i＞j$ ，后缀 $s[i…|s|]$ 的子
序列是后缀 $s[j…|s|]$ 的子序列的子集，一定要选尽量靠前的，才能最优。

构建复杂度是 $O(n|\sum|)$ 。

问题导入：

给定一个字符串 S ， q 次询问，每次给定另一个字符串 T ，询问 T 是否是 S 的子序列。
$len(S)≤10^{5},q≤10^{5},\sum len(T)≤10^{6}$

最暴力的做法：建一个 t_{0} ，指向所有点，然后每个点的后继是后面的点，最后每个点打结束标记，
这样光建边就要 $O(len^{2})$ 再加上查询是 $O(\sum |T|)$ 。显然爆炸。显然对于相同的字符贪心取前面
的就好了，记录每种字符在哪些位置出现过。这个复杂度是 $O(len)$ 的，然后对于查找串的当前字符
$upper_bound(pos[c].begin(),pos[c].end(),now_pos);$ ，如果查找到 end 说明不存在，如果一直找到
最后说明存在。这个的复杂度是 $O(|S|+\sum |T|*log(|S|))$ 的。

const int MAXN=1001000;
const int MAXM=26;
int q;
char s[MAXN],t[MAXN];
vector<int> pos[MAXM];
bool work() {
 scanf("%s",t);
 int len=strlen(t);
 int nowpos=-1;
 for(int i=0;i<len;i++) {
 vector<int>:: iterator y=upper_bound(pos[t[i]-
'a'].begin(),pos[t[i]-'a'].end(),nowpos);
 if(y==pos[t[i]-'a'].end()) return false;
 nowpos=*y;
 }
 return true;
}

void solve() {

Last
update:
2021/08/01
01:13

2020-2021:teams:legal_string:
王智彪:序列自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627751622

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:29

 scanf("%s",s);
 scanf("%d",&q);
 int len=strlen(s);
 for(int i=0;i<len;i++) {
 pos[s[i]-'a'].push_back(i);
 }
 while(q--) {
 if(work()) puts("Yes");
 else puts("No");
 }
}

int main() {
 solve();
 return 0;
}

如果要支持带修，把 $vector$ 换成平衡树即可（修改变成 $O(logn)$ 的）。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627751622

Last update: 2021/08/01 01:13

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627751622

	序列自动机
	算法思想

