
2026/01/14 05:03 1/8 序列自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

序列自动机

算法思想

序列自动机是接受且仅接受一个字符串的子序列的自动机。字符串设为 s 。

若 s 包含 n 个字符，那么序列自动机包括 $n+1$ 个状态。

令 t 是 s 的一个子序列，则 $d(start,t)$ 是 t 在 s 第一次出现时末端的位置。

也就是说，一个状态 i 表示前缀 $s[1…i]$ 的子序列与前缀 $s[1…i-1]$ 的子序列的差集。

序列自动机上的所有状态都是接受状态。

$d(u,c)=min\{i|i>u,s[i]=c\}$ ，也就是字符 c 下一次出现的位置。因为若 $i＞j$ ，后缀 $s[i…|s|]$ 的子
序列是后缀 $s[j…|s|]$ 的子序列的子集，一定要选尽量靠前的，才能最优。

构建复杂度是 $O(n|\sum|)$ 。

算法实现

构造

struct SQAM {//构建复杂度是n方的
 int ch[MAXL][MAXM],las[MAXM],pre[MAXL];
 int root,tot;
 void init() {
 root=tot=1;
 for(int i=0; i<MAXM; i++) las[i]=1; //上一个是根节点
 }
 void insert(int c) {
 int p=las[c],np=++tot;//p是上一个字符c出现的结点 np是现在结点
 pre[np]=p;//现在结点的前驱是上一个出现的结点
 for(int i=0; i<MAXM; i++) { //对于每个字符对于字符c都要更新下一次出现的位置
 for(int j=las[i]; j&&!ch[j][c]; j=pre[j]) { //这个位置没有接过c，这
次接上 然后一直跳pre都更新
 ch[j][c]=np;
 }
 }
 las[c]=np;//别忘了把最新的位置更新
 }
} s1,s2;

代码练习

Last
update:
2021/08/01
18:42

2020-2021:teams:legal_string:
王智彪:序列自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627814522

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:03

问题导入：

给定一个字符串 S ， q 次询问，每次给定另一个字符串 T ，询问 T 是否是 S 的子序列。
$len(S)≤10^{5},q≤10^{5},\sum len(T)≤10^{6}$

最暴力的做法：建一个 t_{0} ，指向所有点，然后每个点的后继是后面的点，最后每个点打结束标记，
这样光建边就要 $O(len^{2})$ 再加上查询是 $O(\sum |T|)$ 。显然爆炸。显然对于相同的字符贪心取前面
的就好了，记录每种字符在哪些位置出现过。这个复杂度是 $O(len)$ 的，然后对于查找串的当前字符
$upper_bound(pos[c].begin(),pos[c].end(),now_pos);$ ，如果查找到 end 说明不存在，如果一直找到
最后说明存在。这个的复杂度是 $O(|S|+\sum |T|*log(|S|))$ 的。

const int MAXN=1001000;
const int MAXM=26;
int q;
char s[MAXN],t[MAXN];
vector<int> pos[MAXM];
bool work() {
 scanf("%s",t);
 int len=strlen(t);
 int nowpos=-1;
 for(int i=0;i<len;i++) {
 vector<int>:: iterator y=upper_bound(pos[t[i]-
'a'].begin(),pos[t[i]-'a'].end(),nowpos);
 if(y==pos[t[i]-'a'].end()) return false;
 nowpos=*y;
 }
 return true;
}

void solve() {
 scanf("%s",s);
 scanf("%d",&q);
 int len=strlen(s);
 for(int i=0;i<len;i++) {
 pos[s[i]-'a'].push_back(i);
 }
 while(q--) {
 if(work()) puts("Yes");
 else puts("No");
 }
}

int main() {
 solve();
 return 0;
}

如果要支持带修，把 $vector$ 换成平衡树即可（修改变成 $O(logn)$ 的）。

2026/01/14 05:03 3/8 序列自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

#include<iostream>
#include<cstdlib>
using namespace std;
const int N=1e5+10;
struct fhq_treap{
 int lson,rson;
 int val,key;
 int size;
};
fhq_treap fhq[N];
int root[N],a[N];
int tot;
inline int newnode(int val){
 tot++;
 fhq[tot].key=rand();
 fhq[tot].val=val;
 fhq[tot].size=1;
 return tot;
}
inline void pushup(int pos){
 fhq[pos].size=fhq[fhq[pos].lson].size+fhq[fhq[pos].rson].size+1;
}
void split(int pos,int val,int &x,int &y){
 if(!pos){
 x=y=0;
 return ;
 }
 if(fhq[pos].val<=val){
 x=pos;
 split(fhq[pos].rson,val,fhq[x].rson,y);
 }
 else{
 y=pos;
 split(fhq[pos].lson,val,x,fhq[y].lson);
 }
 pushup(pos);
}
int merge(int x,int y){
 if(!x||!y)
 return x+y;
 if(fhq[x].key<fhq[y].key){
 fhq[x].rson=merge(fhq[x].rson,y);
 pushup(x);
 return x;
 }
 else{
 fhq[y].lson=merge(x,fhq[y].lson);
 pushup(y);
 return y;
 }

Last
update:
2021/08/01
18:42

2020-2021:teams:legal_string:
王智彪:序列自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627814522

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:03

}
void ins(int &pos,int val){
 int x,y;
 split(pos,val,x,y);
 pos=merge(merge(x,newnode(val)),y);
}
void del(int &pos,int val){
 int x,y,z;
 split(pos,val-1,x,y);
 split(y,val,y,z);
 y=merge(fhq[y].lson,fhq[y].rson);
 pos=merge(merge(x,y),z);
}
int get_suc(int &pos,int val){
 int x,y;
 split(pos,val,x,y);
 int ans=y;
 while(fhq[ans].lson)
 ans=fhq[ans].lson;
 pos=merge(x,y);
 return fhq[ans].val;
}
int main(){
 int t,n,m,k;
 cin>>t>>n>>m>>k;
 for(int i=1;i<=n;i++){
 cin>>a[i];
 root[a[i]]=merge(root[a[i]],newnode(i));
 }
 int opt;
 int x,y;
 int pos=0;
 bool flag;
 for(int i=1;i<=m;i++){
 cin>>opt;
 if(opt){
 cin>>x;
 pos=0;
 flag=true;
 for(int j=1;j<=x;j++){
 cin>>y;
 pos=get_suc(root[y],pos);
 if(!pos)
 flag=false;
 }
 if(flag)
 cout<<"Yes\n";
 else
 cout<<"No\n";
 }

2026/01/14 05:03 5/8 序列自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

 else{
 cin>>x>>y;
 del(root[a[x]],x);//删除
 a[x]=y;//修改
 ins(root[a[x]],x);//插入
 }
 }
}

1.https://www.luogu.com.cn/problem/P4112#submit

题意

给定两个长度不超过 2000 的字符串，分别设为 s_{1},s_{2}

分为四个问题：

- 求 s_{1} 的最短的子串且不是 s_{2} 的子串 - 求 s_{1} 的最短的子串且不是 s_{2} 的子序列 -
求 s_{1} 的最短的子序列且不是 s_{2} 的子串 - 求 s_{1} 的最短的子序列且不是 s_{2} 的子序
列

如果没找到输出 -1 。

题解

显然要分别对两个串建立后缀自动机和序列自动机

因为要找最短的，所以 BFS 开始搜，不管是什么自动机，从根节点往下开始搜，搜到 s_{1} 有结点
且 s_{2} 没有的结点就可以了，如果到最后都没找到输出 -1 即可。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const int MAXL=2021;
const int MAXM=46;

const int MAXN=2021;
struct SAM {
 int las,tot;
 struct NODE {
 int ch[MAXM];
 int len,fa;
 NODE() {
 memset(ch,0,sizeof(ch));
 len=0;
 fa=0;
 }

https://www.luogu.com.cn/problem/P4112#submit

Last
update:
2021/08/01
18:42

2020-2021:teams:legal_string:
王智彪:序列自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627814522

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:03

 } dian[MAXN<<1];
 void init() {
 las=tot=1;
 }
 void add(int c) {
 int p=las;
 int np=las=++tot;
 dian[np].len=dian[p].len+1;
 for(; p&&!dian[p].ch[c]; p=dian[p].fa)dian[p].ch[c]=np;
 if(!p)dian[np].fa=1;//以上为case 1
 else {
 int q=dian[p].ch[c];
 if(dian[q].len==dian[p].len+1)dian[np].fa=q;//以上为case 2
 else {
 int nq=++tot;
 dian[nq]=dian[q];
 dian[nq].len=dian[p].len+1;
 dian[q].fa=dian[np].fa=nq;
 for(; p&&dian[p].ch[c]==q; p=dian[p].fa)dian[p].ch[c]=nq; //
以上为case 3
 }
 }
 }
}S1,S2;

char A[MAXL],B[MAXL];
int la,lb;

struct SQAM {//构建复杂度是n方的
 int ch[MAXL][MAXM],las[MAXM],pre[MAXL];
 int root,tot;
 void init() {
 root=tot=1;
 for(int i=0; i<MAXM; i++) las[i]=1; //上一个是根节点
 }
 void insert(int c) {
 int p=las[c],np=++tot;//p是上一个字符c出现的结点 np是现在结点
 pre[np]=p;//现在结点的前驱是上一个出现的结点
 for(int i=0; i<MAXM; i++) { //对于每个字符对于字符c都要更新下一次出现的位置
 for(int j=las[i]; j&&!ch[j][c]; j=pre[j]) { //这个位置没有接过c，这
次接上 然后一直跳pre都更新
 ch[j][c]=np;
 }
 }
 las[c]=np;//别忘了把最新的位置更新
 }
} s1,s2;

struct Node {
 int a,b,s;

2026/01/14 05:03 7/8 序列自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

};
int vis[MAXL<<1][MAXL<<1];

int BFS(int v){
 queue<Node>q;
 vis[1][1]=v;
 Node ntmp;
 ntmp.a=1,ntmp.b=1,ntmp.s=0;
 q.push(ntmp);
 while(!q.empty()) {
 ntmp=q.front();
 int a=ntmp.a,b=ntmp.b,s=ntmp.s;
 //printf("%d %d %d %d\n",a,b,s,v);
 q.pop();
 for(int i=0,da,db;i<MAXM;i++) {
 if(v==1) {
 da=S1.dian[a].ch[i],db=S2.dian[b].ch[i];
 }else if(v==2) {
 da=S1.dian[a].ch[i],db=s2.ch[b][i];
 }else if(v==3) {
 da=s1.ch[a][i],db=S2.dian[b].ch[i];
 }else if(v==4) {
 da=s1.ch[a][i],db=s2.ch[b][i];
 }
 //printf("%d %d %d\n",da,db,v);
 if(vis[da][db]==v) continue;
 if(da&&!db) return s+1;
 if(da&&db) {
 Node nntmp;
 nntmp.a=da,nntmp.b=db,nntmp.s=s+1;
 q.push(nntmp);
 vis[da][db]=v;
 }
 }
 }
 return -1;
}

int main() {
 scanf("%s%s",A,B);
 la=strlen(A); lb=strlen(B);
 s1.init();s2.init();S1.init();S2.init();
 for(int i=0; i<la; i++) {
 S1.add(A[i]-'a');
 s1.insert(A[i]-'a');
 }
 for(int i=0; i<lb; i++) {
 S2.add(B[i]-'a');
 s2.insert(B[i]-'a');
 }
 int a1=BFS(1),a2=BFS(2),a3=BFS(3),a4=BFS(4);

Last
update:
2021/08/01
18:42

2020-2021:teams:legal_string:
王智彪:序列自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627814522

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:03

 printf("%d\n%d\n%d\n%d\n",a1,a2,a3,a4);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627814522

Last update: 2021/08/01 18:42

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E5%BA%8F%E5%88%97%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627814522

	序列自动机
	算法思想
	算法实现
	构造

	代码练习
	题意
	题解

