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数论

整除

如果 $k_{1},k_{2}$ 互质，则 $k_{1}+k_{2}$ 与 $k_{1}×k_{2}$ 互质。

在自然数集中，小于 $n$ 的质数约有 ${\frac {n} {ln(n)}}$ 个。

切比雪夫定理

$1.$ 对整数 $n＞3$ ，则至少存在一个质数 $p$ ，符合 $n＜p＜2n-2$ 。

$2.$ 对任意自然数 $n > 6$ ， 至少存在一个 $4k + 1$ 型和一个 $4k + 3$ 型素数 $p$ 使得 $n < p < 2n$ 。

$3.$ 对任意自然数 $k$ ， 存在自然数 $N$ ， 对任意自然数 $n > N$ 至少存在 $k$ 个素数 $p$ 使得 $n < p
< 2n$ 。

$Miller-Rabin$

$Miller-Rabin$ 的复杂度是 $O(klogn)$ ，其中 $k$ 是测试次数。

质数筛法

埃氏筛

思想： 从小到大枚举分析每一个数，然后同时把当前这个数的所有（比自己大的）倍数记为合数，那么运
行结束的时候没有被标记的数就是素数了。

int v[N];
void primes(int n) {
    memset(v, 0, sizeof v);
    for(int i = 2;i <= n; ++ i){
        if(v[i])continue;
        for(int j = i;j <= n / i; ++ j) v[i * j] = 1;
    }
}

时间复杂度： $O(nlog_{10}log_{10}n)≈O(n)$ ，所以它的时间复杂度其实是劣于线性筛的。这里补充自然
数以及合数的和都是 $O(log_{10}n)$ ，质数为 $O(log_{10}log_{10}n)$ 。

虽然其时间复杂度比较劣，但这种思想是很值得学习的。如果需要筛一个 $[L,R]$ 的区间内的素数，我们
需要先看 $sqrt(R)$ 的范围，然后预处理出这个范围内的素数。然后从小到大枚举素数，找到不小于 $L$
的最小 $p$ 的倍数，且不能是 $p$ 本身，然后按照这个筛法打标记，复杂度是 $O(R-L+{\sqrt {R}})$ 。
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代码如下：

​   memset(st, 0, sizeof st);
​       for (int i = 0; i < cnt; i ++ ) {
​           LL p = primes[i];// 先筛一遍
​           for (LL j = max(p * 2, (l + p - 1) / p * p); j <= r; j += p)
​               st[j - l] = true;
​       }

线性筛（欧拉筛）

扫到一个数字 $i$ 时，如果没有标记过，则为质数。

不然 $i$ 为合数，考虑将质数数组中从小到大开始给 $i×prime[j]$ 打标记，直到 $i%prime[j]==0$ ，这时
我们找到了 $i$ 的最小质因子 $prime[j]$ ，在此之前的质因子全都比 $i$ 的最小质因子要小，所以打标记
的数字，都是因为枚举到了这个数字的最小质因子才打的，之后的数字，因为都比最小质因子要大，所以
不打标记，直接 $break$ 。所以每个数字因为只有一个最小质因子，所以只枚举了一次，复杂度为 $O(n)$ 。
并且我们在筛的同时，也拿到了 $1~n$ 每个数字的最小质因子。

const int N = 10005;
int n, primes[N], cnt,min_prime[N];
bool vis[N];
inline void get_prime() {
    for(register int i = 2; i <= n; i ++) {
        if(!vis[i]) primes[ ++ cnt] = i;
        for(register int j = 1; j <= cnt && i * primes[j] <= n; ++ j) {
            vis[i * primes[j]] = 1;
            if(i % primes[j] == 0) {
                min_prime[i]=prime[j];// 最小质因子
                break;
            }
        }
    }
}

反素数

如果 $n$ 是 $1…n$ 中正约数个数最多的数，且唯一，也就是约数最多且最小，那么 $n$ 就是反素数。

若 $N≤2^{31}$ ， $1…N$ 中任何数的不同质因子都不会超过 $10$ 个且所有质因子的质数都不会超过
$30$ 。因为光 $2$ 乘到 $31$ 这个数都比 $N$ 大。所以反素数都可以表示为
$2^{c_{1}}×3^{c_{2}}×5^{c_{3}}×7^{c_{4}}×11^{c_{5}}×13^{c_{6}}×17^{c_{7}}×19^{
c_{8}}×23^{c_{9}}×29^{c_{10}}$ ，其中 $c$ 数组递减。

所以我们可以直接 $dfs$ 找到前十个质数
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例 $1$

题目

给定一个正整数 $n$ ，输出最小的整数，满足这个整数有 $n$ 个因子，即求因子数一定的最小反素数。

题解

按上面的剪剪枝，乱写就行了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
 
int num[12]={2,3,5,7,11,13,17,19,23,29};
int cnt[12];
int n;
ull ans=9e18;
void dfs(int now,ull q,int pos) {
    if(now==n) {
        if(q<ans) ans=q;
        return;
    }
    if(pos>=10) return;
    ull tmp=q;
    for(int i=1;(i+1)*now<=n;i++) {
        if(pos!=0) {
            if(i>cnt[pos-1]) break;
        }
        tmp*=num[pos];
        if (tmp>2e18) break;
        if(n/now%(i+1)!=0) continue;
        cnt[pos] = i;
        dfs(now*(i+1),tmp,pos+1);
    }
}
 
int main() {
    scanf("%d",&n);
    dfs(1,1,0);
    printf("%llu",ans);
    return 0;
}
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Pollard Rho

时间复杂度 $O(n^{\frac {1} {4}})$ ，用来找到 $n$ 的一个素因子 $p$ ，每次找到就一直除它，最不利的
情况是每个素因子都是一次幂，所以全部分解的复杂度正常是 $O(n^{\frac {1} {4}}logn)$ 的，但因为
质因数越多的时候大小都不一样，正常的对数级别的最后实际上也就是常数级别的影响，所以完全分解也
可以看作是 $O(n^{\frac {1} {4}})$ 的。

例 $2$

题目

https://nanti.jisuanke.com/t/42544

给 $t$ 组数据 $(t≤8)$ ，每组数据给一个 $n,x,y,n≤10^{5},2≤x,y≤10^{18}$ ，代表一个长度为 $n$ 的
数组 $a_{i},a_{i}≤10^{18}$ ，且保证 $a_{i}$ 之和小于 $y$ 。现在定义
$Z={\prod_{i=1}^{n}}a_{i}!$ 。求最大的 $i$ ，使得 $(Z×X^{i})|Y!$ 。

题解

显然对着一堆阶乘使劲是不可以的，显然 $Y!$ 可以约掉 $Z$ 所有的因子。剩下看 $X$ 都有什么因子，然
后提前处理出 $Y!$ 和 $Z$ 中这些因子的幂次，做一个差，然后取所有剩余幂次/一个 $X$ 中有多少个幂
次，就是能取多少个 $X$ ，然后取最小值就是答案。而 $X$ 的质因数分解，显然需要 $pollard_rho$ 。

竟然一遍过了 $×$ 。

#include <bits/stdc++.h>
#define ll __int128
using namespace std;
ll maxv;
inline ll quick_mul(ll a,ll b,ll p) {
    unsigned long long c=(long double) a/p*b;
    ll ret=a*b-(unsigned long long)c*p;
    ret%=p;
    while(ret<0) ret+=p;
    return ret%p;
}
inline ll quick_power(ll a,ll b,ll p) {
    ll ret=1;
    while(b) {
        if(b&1) ret=quick_mul(ret,a,p);
        a=quick_mul(a,a,p);
        b>>=1;
    }
    while(ret<0) ret+=p;
    return ret%p;
}

https://nanti.jisuanke.com/t/42544
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bool check(ll a,ll n,ll x,ll t) {
    ll ans=quick_power(a,x,n);
    ll aans=ans;
    for(int i=1; i<=t; i++) {
        ans=quick_mul(ans,ans,n);
        if(ans==1&&aans!=1&&aans!=n-1) return true;
        aans=ans;
    }
    if(ans!=1) return true;
    return false;
}
bool Miller_Rabin(ll n) {
    if(n<2) return false;
    if(n==2) return true;
    if(!(n&1)) return false;
    ll x=n-1,t=0;
    while(!(x&1)) {
        x>>=1;
        t++;
    }
    for(int i=0; i<8; i++) { //8为测试次数
        ll a=rand()%(n-1)+1;
        if(check(a,n,x,t)) return false;
    }
    return true;
}
ll factor[1010],num;
ll gcd(ll x,ll y) {
    if(!x) return y;
    if(!y) return x;
    if(x<0) x=-x;
    if(y<0) y=-y;
    ll t=__builtin_ctzll(x|y);
    x>>=__builtin_ctzll(x);
    do {
        y>>=__builtin_ctzll(y);
        if(x>y) swap(x,y);
        y-=x;
    } while(y);
    return x<<t;
}
ll pollard_rho(ll x,ll c) {
    ll ci=1,k=2;
    srand(time(NULL));
    ll x0=rand()%(x-1)+1;
    ll y=x0,t=1;
    while(1) {
        ci++;
        x0=(quick_mul(x0,x0,x)+c)%x;
        t=quick_mul(y-x0,t,x);
        if(!t||!(y^x0)) return x;
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        if(ci==k) {
            ll d=gcd(t,x);
            if(d!=1) return d;
            y=x0;
            k<<=1;
        }
    }
}
 
void findfac(ll n,ll k) {
    if(n==1) return;
    if(Miller_Rabin(n)) {
        factor[++num] = n;
        return;
    }
    ll p=n,c=k;
    while(p>=n) {
        p=pollard_rho(p,c--);
    }
    findfac(p,k);
    findfac(n/p,k);
}
inline void read(ll &X) {
    X = 0;
    int w=0;
    char ch=0;
    while(!isdigit(ch)) {
        w|=ch=='-';
        ch=getchar();
    }
    while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
    if (w) X = -X;
}
void print(ll x) {
    if (!x) return ;
    if (x < 0) putchar('-'),x = -x;
    print(x / 10);
    putchar(x % 10 + '0');
}
ll n,x,y,a[100100];
ll tmpfac[10010],tmps,tmpnum[10010];
ll js[100100][17],zs[17];
int main() {
    int t;
    scanf("%d",&t);
    while(t--) {
        num=0;
        tmps = 0;
        read(n);
        read(x);
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        read(y);
        for(int i=1; i<=n; i++) {
            read(a[i]);
        }
        findfac(x,324757);
        sort(factor+1,factor+num+1);
        ll las=factor[1];
        tmpfac[++tmps] = las;
        tmpnum[tmps]=1;
        for(int i=2; i<=num; i++) {
            if(factor[i]==las) {
                tmpnum[tmps]++;
            } else {
                las = factor[i];
                tmpfac[++tmps] = factor[i];
                tmpnum[tmps] = 1;
            }
        }
        for(int i=1; i<=tmps; i++) {
            for(int j=1; j<=n; j++) {
                ll ansss=0;
                ll kkk = tmpfac[i];
                for(ll k=a[j]; k; k=k/kkk) {
                    ansss+=k/kkk;
                }
                js[j][i]=ansss;
            }
        }
        for(int i=1; i<=tmps; i++) {
            for(int j=2; j<=n; j++) js[1][i] += js[j][i];
        }
        for(int i=1; i<=tmps; i++) {
            ll ansss=0;
            ll kkk = tmpfac[i];
            for(ll k=y; k; k=k/kkk) {
                ansss+=k/kkk;
            }
            zs[i] = ansss;
        }
        for(int i=1;i<=tmps;i++) zs[i]-=js[1][i];
        ll maxv=1e18;
        for(int i=1;i<=tmps;i++) {
            maxv=min(maxv,zs[i]/tmpnum[i]);
        }
        if(maxv) print(maxv);
        else putchar('0');
        putchar('\n');
    }
    return 0;
}
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