
2026/01/14 03:28 1/8 数论

CVBB ACM Team - https://wiki.cvbbacm.com/

数论

整除

如果 k_{1},k_{2} 互质，则 $k_{1}+k_{2}$ 与 $k_{1}×k_{2}$ 互质。

在自然数集中，小于 n 的质数约有 ${\frac {n} {ln(n)}}$ 个。

切比雪夫定理

$1.$ 对整数 $n＞3$ ，则至少存在一个质数 p ，符合 $n＜p＜2n-2$ 。

$2.$ 对任意自然数 $n > 6$ ， 至少存在一个 $4k + 1$ 型和一个 $4k + 3$ 型素数 p 使得 $n < p < 2n$ 。

$3.$ 对任意自然数 k ， 存在自然数 N ， 对任意自然数 $n > N$ 至少存在 k 个素数 p 使得 $n < p
< 2n$ 。

$Miller-Rabin$

$Miller-Rabin$ 的复杂度是 $O(klogn)$ ，其中 k 是测试次数。

质数筛法

埃氏筛

思想： 从小到大枚举分析每一个数，然后同时把当前这个数的所有（比自己大的）倍数记为合数，那么运
行结束的时候没有被标记的数就是素数了。

int v[N];
void primes(int n) {
 memset(v, 0, sizeof v);
 for(int i = 2;i <= n; ++ i){
 if(v[i])continue;
 for(int j = i;j <= n / i; ++ j) v[i * j] = 1;
 }
}

时间复杂度： $O(nlog_{10}log_{10}n)≈O(n)$ ，所以它的时间复杂度其实是劣于线性筛的。这里补充自然
数以及合数的和都是 $O(log_{10}n)$ ，质数为 $O(log_{10}log_{10}n)$ 。

虽然其时间复杂度比较劣，但这种思想是很值得学习的。如果需要筛一个 $[L,R]$ 的区间内的素数，我们
需要先看 $sqrt(R)$ 的范围，然后预处理出这个范围内的素数。然后从小到大枚举素数，找到不小于 L
的最小 p 的倍数，且不能是 p 本身，然后按照这个筛法打标记，复杂度是 $O(R-L+{\sqrt {R}})$ 。

Last
update:
2021/09/24
18:10

2020-2021:teams:legal_string:
王智彪:数论

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E6%95%B0%E8%AE%BA&rev=1632478242

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:28

代码如下：

​ memset(st, 0, sizeof st);
​ for (int i = 0; i < cnt; i ++) {
​ LL p = primes[i];// 先筛一遍
​ for (LL j = max(p * 2, (l + p - 1) / p * p); j <= r; j += p)
​ st[j - l] = true;
​ }

线性筛（欧拉筛）

扫到一个数字 i 时，如果没有标记过，则为质数。

不然 i 为合数，考虑将质数数组中从小到大开始给 $i×prime[j]$ 打标记，直到 $i%prime[j]==0$ ，这时
我们找到了 i 的最小质因子 $prime[j]$ ，在此之前的质因子全都比 i 的最小质因子要小，所以打标记
的数字，都是因为枚举到了这个数字的最小质因子才打的，之后的数字，因为都比最小质因子要大，所以
不打标记，直接 $break$ 。所以每个数字因为只有一个最小质因子，所以只枚举了一次，复杂度为 $O(n)$ 。
并且我们在筛的同时，也拿到了 $1~n$ 每个数字的最小质因子。

const int N = 10005;
int n, primes[N], cnt,min_prime[N];
bool vis[N];
inline void get_prime() {
 for(register int i = 2; i <= n; i ++) {
 if(!vis[i]) primes[++ cnt] = i;
 for(register int j = 1; j <= cnt && i * primes[j] <= n; ++ j) {
 vis[i * primes[j]] = 1;
 if(i % primes[j] == 0) {
 min_prime[i]=prime[j];// 最小质因子
 break;
 }
 }
 }
}

反素数

如果 n 是 $1…n$ 中正约数个数最多的数，且唯一，也就是约数最多且最小，那么 n 就是反素数。

若 $N≤2^{31}$ ， $1…N$ 中任何数的不同质因子都不会超过 10 个且所有质因子的质数都不会超过
30 。因为光 2 乘到 31 这个数都比 N 大。所以反素数都可以表示为
$2^{c_{1}}×3^{c_{2}}×5^{c_{3}}×7^{c_{4}}×11^{c_{5}}×13^{c_{6}}×17^{c_{7}}×19^{
c_{8}}×23^{c_{9}}×29^{c_{10}}$ ，其中 c 数组递减。

所以我们可以直接 dfs 找到前十个质数

2026/01/14 03:28 3/8 数论

CVBB ACM Team - https://wiki.cvbbacm.com/

例 1

题目

给定一个正整数 n ，输出最小的整数，满足这个整数有 n 个因子，即求因子数一定的最小反素数。

题解

按上面的剪剪枝，乱写就行了。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;

int num[12]={2,3,5,7,11,13,17,19,23,29};
int cnt[12];
int n;
ull ans=9e18;
void dfs(int now,ull q,int pos) {
 if(now==n) {
 if(q<ans) ans=q;
 return;
 }
 if(pos>=10) return;
 ull tmp=q;
 for(int i=1;(i+1)*now<=n;i++) {
 if(pos!=0) {
 if(i>cnt[pos-1]) break;
 }
 tmp*=num[pos];
 if (tmp>2e18) break;
 if(n/now%(i+1)!=0) continue;
 cnt[pos] = i;
 dfs(now*(i+1),tmp,pos+1);
 }
}

int main() {
 scanf("%d",&n);
 dfs(1,1,0);
 printf("%llu",ans);
 return 0;
}

Last
update:
2021/09/24
18:10

2020-2021:teams:legal_string:
王智彪:数论

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E6%95%B0%E8%AE%BA&rev=1632478242

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:28

Pollard Rho

时间复杂度 $O(n^{\frac {1} {4}})$ ，用来找到 n 的一个素因子 p ，每次找到就一直除它，最不利的
情况是每个素因子都是一次幂，所以全部分解的复杂度正常是 $O(n^{\frac {1} {4}}logn)$ 的，但因为
质因数越多的时候大小都不一样，正常的对数级别的最后实际上也就是常数级别的影响，所以完全分解也
可以看作是 $O(n^{\frac {1} {4}})$ 的。

例 2

题目

https://nanti.jisuanke.com/t/42544

给 t 组数据 $(t≤8)$ ，每组数据给一个 $n,x,y,n≤10^{5},2≤x,y≤10^{18}$ ，代表一个长度为 n 的
数组 $a_{i},a_{i}≤10^{18}$ ，且保证 a_{i} 之和小于 y 。现在定义
$Z={\prod_{i=1}^{n}}a_{i}!$ 。求最大的 i ，使得 $(Z×X^{i})|Y!$ 。

题解

显然对着一堆阶乘使劲是不可以的，显然 $Y!$ 可以约掉 Z 所有的因子。剩下看 X 都有什么因子，然
后提前处理出 $Y!$ 和 Z 中这些因子的幂次，做一个差，然后取所有剩余幂次/一个 X 中有多少个幂
次，就是能取多少个 X ，然后取最小值就是答案。而 X 的质因数分解，显然需要 $pollard_rho$ 。

竟然一遍过了 $×$ 。

#include <bits/stdc++.h>
#define ll __int128
using namespace std;
ll maxv;
inline ll quick_mul(ll a,ll b,ll p) {
 unsigned long long c=(long double) a/p*b;
 ll ret=a*b-(unsigned long long)c*p;
 ret%=p;
 while(ret<0) ret+=p;
 return ret%p;
}
inline ll quick_power(ll a,ll b,ll p) {
 ll ret=1;
 while(b) {
 if(b&1) ret=quick_mul(ret,a,p);
 a=quick_mul(a,a,p);
 b>>=1;
 }
 while(ret<0) ret+=p;
 return ret%p;
}

https://nanti.jisuanke.com/t/42544

2026/01/14 03:28 5/8 数论

CVBB ACM Team - https://wiki.cvbbacm.com/

bool check(ll a,ll n,ll x,ll t) {
 ll ans=quick_power(a,x,n);
 ll aans=ans;
 for(int i=1; i<=t; i++) {
 ans=quick_mul(ans,ans,n);
 if(ans==1&&aans!=1&&aans!=n-1) return true;
 aans=ans;
 }
 if(ans!=1) return true;
 return false;
}
bool Miller_Rabin(ll n) {
 if(n<2) return false;
 if(n==2) return true;
 if(!(n&1)) return false;
 ll x=n-1,t=0;
 while(!(x&1)) {
 x>>=1;
 t++;
 }
 for(int i=0; i<8; i++) { //8为测试次数
 ll a=rand()%(n-1)+1;
 if(check(a,n,x,t)) return false;
 }
 return true;
}
ll factor[1010],num;
ll gcd(ll x,ll y) {
 if(!x) return y;
 if(!y) return x;
 if(x<0) x=-x;
 if(y<0) y=-y;
 ll t=__builtin_ctzll(x|y);
 x>>=__builtin_ctzll(x);
 do {
 y>>=__builtin_ctzll(y);
 if(x>y) swap(x,y);
 y-=x;
 } while(y);
 return x<<t;
}
ll pollard_rho(ll x,ll c) {
 ll ci=1,k=2;
 srand(time(NULL));
 ll x0=rand()%(x-1)+1;
 ll y=x0,t=1;
 while(1) {
 ci++;
 x0=(quick_mul(x0,x0,x)+c)%x;
 t=quick_mul(y-x0,t,x);
 if(!t||!(y^x0)) return x;

Last
update:
2021/09/24
18:10

2020-2021:teams:legal_string:
王智彪:数论

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E6%95%B0%E8%AE%BA&rev=1632478242

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:28

 if(ci==k) {
 ll d=gcd(t,x);
 if(d!=1) return d;
 y=x0;
 k<<=1;
 }
 }
}

void findfac(ll n,ll k) {
 if(n==1) return;
 if(Miller_Rabin(n)) {
 factor[++num] = n;
 return;
 }
 ll p=n,c=k;
 while(p>=n) {
 p=pollard_rho(p,c--);
 }
 findfac(p,k);
 findfac(n/p,k);
}
inline void read(ll &X) {
 X = 0;
 int w=0;
 char ch=0;
 while(!isdigit(ch)) {
 w|=ch=='-';
 ch=getchar();
 }
 while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
 if (w) X = -X;
}
void print(ll x) {
 if (!x) return ;
 if (x < 0) putchar('-'),x = -x;
 print(x / 10);
 putchar(x % 10 + '0');
}
ll n,x,y,a[100100];
ll tmpfac[10010],tmps,tmpnum[10010];
ll js[100100][17],zs[17];
int main() {
 int t;
 scanf("%d",&t);
 while(t--) {
 num=0;
 tmps = 0;
 read(n);
 read(x);

2026/01/14 03:28 7/8 数论

CVBB ACM Team - https://wiki.cvbbacm.com/

 read(y);
 for(int i=1; i<=n; i++) {
 read(a[i]);
 }
 findfac(x,324757);
 sort(factor+1,factor+num+1);
 ll las=factor[1];
 tmpfac[++tmps] = las;
 tmpnum[tmps]=1;
 for(int i=2; i<=num; i++) {
 if(factor[i]==las) {
 tmpnum[tmps]++;
 } else {
 las = factor[i];
 tmpfac[++tmps] = factor[i];
 tmpnum[tmps] = 1;
 }
 }
 for(int i=1; i<=tmps; i++) {
 for(int j=1; j<=n; j++) {
 ll ansss=0;
 ll kkk = tmpfac[i];
 for(ll k=a[j]; k; k=k/kkk) {
 ansss+=k/kkk;
 }
 js[j][i]=ansss;
 }
 }
 for(int i=1; i<=tmps; i++) {
 for(int j=2; j<=n; j++) js[1][i] += js[j][i];
 }
 for(int i=1; i<=tmps; i++) {
 ll ansss=0;
 ll kkk = tmpfac[i];
 for(ll k=y; k; k=k/kkk) {
 ansss+=k/kkk;
 }
 zs[i] = ansss;
 }
 for(int i=1;i<=tmps;i++) zs[i]-=js[1][i];
 ll maxv=1e18;
 for(int i=1;i<=tmps;i++) {
 maxv=min(maxv,zs[i]/tmpnum[i]);
 }
 if(maxv) print(maxv);
 else putchar('0');
 putchar('\n');
 }
 return 0;
}

Last
update:
2021/09/24
18:10

2020-2021:teams:legal_string:
王智彪:数论

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E6%95%B0%E8%AE%BA&rev=1632478242

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:28

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E6%95%B0%E8%AE%BA&rev=1632478242

Last update: 2021/09/24 18:10

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E6%95%B0%E8%AE%BA&rev=1632478242

	数论
	整除
	切比雪夫定理
	$Miller-Rabin$
	质数筛法
	埃氏筛
	线性筛（欧拉筛）

	反素数
	例 1
	题目
	题解

	Pollard Rho
	例 2
	题目
	题解

