
2026/01/14 05:22 1/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

网络流入门

算法简介

几个概念

容量

每条边(u,v)都有一个权值$c(u,v)$，被称为容量，而当边不属于这个图时，容量为0

流

流满足以下几个条件：

容量限制：流经过边的流量不能超过该边的容量，即 $f(u,v)≤c(u,v)$

斜对称性：每条边的流量与其相反边的流量之和为0，即 $f(u,v)=-f(v,u)$

流守恒性：从源点流出的流量等于汇点流入的流量

剩余容量

表示一条边的容量与流量之差： $c_{f}(u,v)=c(u,v)-f(u,v)$

残量网络

对于流函数 f ，残存网络 G_{f} 是网络 G 中所有结点和剩余容量大于0的边构成的子图。注意，
剩余容量大于 0 的边可能不在原图中。可以理解为，残量网络中包括了那些还剩了流量空间的边构成的图，
也包括虚边（即反向边）。

增广路

在原图中若一条从源点到汇点的路径上所有边的剩余容量都大于0，这条路叫做增广路。

对于网络流，现在主流的有 $EK,Dinic,SAP,ISAP$ 算法

算法思想

我们先设点数为 n ，边数为 m 。

Last
update:
2021/07/14
18:24

2020-2021:teams:legal_string:
王智彪:网络流入门

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

EK

使用 BFS 进行增广。

具体来说就是从源点一直 BFS 走来走去，碰到汇点就停，然后进行增广，要注意一下流量合不合法。

增广方式： 把找到的增广路再走一遍，走的时候把这条路的能够成的最大流量减下去，然后给答案加上最
小流量。

增广的时候要注意建造反向边，原因是这条路不一定是最优的，这样子程序可以进行反悔。假如我们对这
条路进行增广了，那么其中的每一条边的反向边的流量就是它的流量。

时间复杂度为 $O(nm^{2})$ ，效率较低。

$Dinic$

每次增广前，我们先用 BFS 来将图分层。设源点的层数为 0 ，那么一个点的层数便是它离源点的最近距
离。

何时停止：如果不存在到汇点的增广路（即汇点的层数不存在），我们即可停止增广。

优化：

多路增广：在一次 DFS 中找出多条增广路。

当前弧优化：因为一条边最多可以被增广一次，所以我们下一次进行增广的时候，就可以不必再走那些已
经被增广过的边。

时间复杂度为 $O(n^{2}m)$ ，在稀疏图上效率和 EK 算法相当，但在稠密图上效率要比EK算法高很
多。在求解二分图最大匹配问题时，Dinic 算法的时间复杂度是 $O(m\sqrt{n})$

我们要确保找到的增广路是最短的，所以我们每次找增广路的时候，都只找比当前点层数多1的点进行增广
（这样就可以确保我们找到的增广路是最短的）。

void addEdge(int i,int a,int b,ll c,int d) {
 u[i]=a;
 v[i]=b;
 w[i]=c;
 rev[i]=d;
 nex[i]=first[a];
 first[a]=i;
}
bool bfs(ll s,ll t) {
 memset(d,0x7fffffff,sizeof(d));
 memset(vis,0,sizeof(vis));
 Q.push(s);
 vis[s]=1;
 d[s]=0;
 while(Q.size()) {
 int p=Q.front();

2026/01/14 05:22 3/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

 Q.pop();
 for(int i=first[p]; i!=-1; i=nex[i])
 if(!vis[v[i]] && w[i]>0) {
 vis[v[i]]=1;
 d[v[i]]=d[p]+1;
 Q.push(v[i]);
 }
 }
 return vis[t];
}
ll dfs(ll x,ll t,ll a) {
 if(x==t || a==0)return a;
 ll flow=0,f;
 for(ll& i=cur[x]; i!=-1; i=nex[i])
 if(d[x]+1==d[v[i]] && (f=dfs(v[i],t,min(a,w[i])))>0) {
 w[i]-=f;
 w[rev[i]]+=f;
 a-=f;
 flow+=f;
 if(a==0)break;
 }
 return flow;
}
ll Dinic(int s,int t) {
 ll flow=0;
 while(bfs(s,t)) {
 for(int i=1; i<=n; i++)cur[i]=first[i];
 flow+=dfs(s,t,oo);
 }
 return flow;
}

 // 加边操作

 for(int i=0; i<m; i++) {
 a=read();
 b=read();
 c=read();
 addEdge(2*i,a,b,c,2*i+1);
 addEdge(2*i+1,b,a,0,2*i);
 }

$ISAP$

$Dinic$ 算法中，每次求完增广路之后要跑一遍 BFS 分层。ISAP的策略是在反图中，从 t 到 s 点进
行 BFS 。

增广过程和 $Dinic$ 类似，选择比当前点层数少 1 的点来增广，所以也存在当前弧优化。

Last
update:
2021/07/14
18:24

2020-2021:teams:legal_string:
王智彪:网络流入门

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

但不同的是， $ISAP$ 在找增广路的途中会完成下一步的分层，比如现在到了 i 号点，其层数为 d_{i} ，
结束这个点的增广过程后，遍历残量网络上 i 的所有出边，找到层最小的出点 j ，然后令
$d_{i}=d_{j}+1$ ，当无出边时，则 $d_{i}=n$ 。则当 $d_{s}≥n$ 时，图上不存在增广路，此时即可终
止算法。

$ISAP$ 还存在 GAP 优化，记录层数为 i 的点的数量为 $num[i]$ ，每当将一个点的层数从 x 更新
到 y 时，要同时更行 num 数组的值，当某次更新之后，如果 $num[x]==0$ 则图中出现断层，必然
找不到增广路，则可以直接终止算法(将 d_{s} 标记为 n)。

时间复杂度与 $Dinic$ 等同，但是实际时间上优于 $Dinic$ 。

inline void addedge(int u,int v,int val){
 node[++cnt].v=v;
 node[cnt].val=val;
 node[cnt].next=head[u];
 head[u]=cnt;
}

void bfs(){
 memset(dep,-1,sizeof(dep));
 memset(gap,0,sizeof(gap));
 dep[t]=0;
 gap[0]=1;
 queue<ll>q;
 q.push(t);
 while(!q.empty()){
 int u=q.front();
 q.pop();
 for(int i=head[u];i;i=node[i].next) {
 int v=node[i].v;
 if(dep[v]!=-1) continue;
 q.push(v);
 dep[v]=dep[u]+1;
 gap[dep[v]]++;
 }
 }
 return;
}
long long maxflow;
ll dfs(ll u,ll flow){
 if(u==t){
 maxflow+=flow;
 return flow;
 }
 ll used=0;
 for(int i=cur[u];i;i=node[i].next){
 cur[u]=i;
 ll d=node[i].v;
 if(node[i].val&&dep[d]+1==dep[u]){
 int mi=dfs(d,min(node[i].val,flow-used));

2026/01/14 05:22 5/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(mi){
 node[i].val-=mi;
 node[i^1].val+=mi;
 used+=mi;
 }
 if(used==flow)return used;
 }
 }
 --gap[dep[u]];
 if(gap[dep[u]]==0)dep[s]=n+1;
 dep[u]++;
 gap[dep[u]]++;
 return used;
}
long long ISAP(){
 maxflow=0;
 bfs();
 while(dep[s]<n) memcpy(cur,head,sizeof(head)),dfs(s,inf);
 return maxflow;
}

 //加边操作

 for(int i=1;i<=m;i++){
 u=Read();v=Read();w=Read();
 addedge(u,v,w);addedge(v,u,0);
 }

预流推进

思想：从源点疯狂“灌水”，水不停流向汇点，能流多少流多少，最后汇点的水的量，就是最大流。

余流：每个点当前有多少水。

步骤：

假装源点有无限的水，并向周围的点推流，推的流量不能超过自身的余流，也不能超过边的容量，并让周
围的点入队(s 和 t 不能入队)。

不断取队首的元素，对队首元素进行推流。

队列为空的时候结束算法，此时汇点的余流即为最大流。

但是有可能会存在两个点之间来回推流，导致死循环。

于是我们需要给每个点设置一个高度，让水只从搞出往低处走，在算法进行的时候，不断地对有余流的点
更改高度（更新为与它相邻（算反向边）且最低的点的高度+ 1 ），直到这些点全部没有余流为止。 而
此时，因为两个点来回推流的时候，高度会不断上升，而超过 s 的高度之后，他们自动会把流还给 s ，
这样就不会死循环了，而 s 的初始高度我们设为 n 即可。

Last
update:
2021/07/14
18:24

2020-2021:teams:legal_string:
王智彪:网络流入门

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

奇慢无比，但是是下一个算法的基础。

$HLPP$

步骤：

从 t 到 s 反向 BFS ，使得每个点有一个初始高度。

从 s 开始推流，将有余流的点放进优先队列，

不断从优先队列中取出高度最高的点进行推流操作，

如果还有余流，更新高度，重新放入优先队列

优先队列为空时结束算法，t的余流是最大流。

为什么相较于普通的预流推进变快了呢？首先我们用BFS预处理了高度，并且因为有优先队列，所以我
们可以每次选用高度最高的点，这样大大减少了推流的次数。

优化：

GAP 优化，同 $ISAP$ ，如果某个高度不存在，将所有比该高度高的节点标记为不可到达。（使它的高
度为 $n+1$ ，这样就会直接向 s 推流了）。

时间复杂度：理论上是 $O(n^{2}\sqrt{m})$ ，但是有较大常数，实际状况下，一般 $ISAP$ 已经足够用。

inline void addEdge(const ll u,const ll v,const ll f) {
 a[u].push_back(edge(v,f,a[v].size()));
 a[v].push_back(edge(u,0,a[u].size()-1));
}
inline void relabel(ll n,ll t) {
 h.assign(n,n);
 h[t]=0;
 cnt.assign(n,0);
 que.clear();
 que.resize(n+1);
 ll qh=0,qt=0;
 for(que[qt++]=t; qh<qt;) {
 ll u=que[qh++],het=h[u]+1;
 for(Iterator p=a[u].begin(); p!=a[u].end(); ++p) {
 if(h[p->to]==n&&a[p->to][p->next].flow>0) {
 cnt[h[p->to]=het]++;
 que[qt++]=p->to;
 }
 }
 }
 for(ll i=0; i<=n; ++i) {
 llist[i].clear();
 dlist[i].clear();
 }

2026/01/14 05:22 7/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

 for(ll u=0; u<n; ++u) {
 if(h[u]<n) {
 iter[u]=dlist[h[u]].insert(dlist[h[u]].begin(),u);
 if(e[u]>0)llist[h[u]].push_back(u);
 }
 }
 hst=(nowh=h[que[qt-1]]);
}
inline void push(ll u,edge &ed) {
 ll v=ed.to;
 ll df=min(e[u],ed.flow);
 ed.flow-=df;
 a[v][ed.next].flow+=df;
 e[u]-=df;
 e[v]+=df;
 if(0<e[v]&&e[v]<=df)llist[h[v]].push_back(v);
}
inline void push(ll n,ll u) {
 ll nh=n;
 for(Iterator p=a[u].begin(); p!=a[u].end(); ++p) {
 if(p->flow>0) {
 if(h[u]==h[p->to]+1) {
 push(u,*p);
 if(e[u]==0)return;
 } else nh=min(nh,h[p->to]+1);
 }
 }
 ll het=h[u];
 if(cnt[het]==1) {
 for(ll i=het; i<=hst; ++i) {
 for(List::iterator it=dlist[i].begin(); it!=dlist[i].end();
++it) {
 cnt[h[*it]]--;
 h[*it]=n;
 }
 dlist[i].clear();
 }
 hst=het-1;
 } else {
 cnt[het]--;
 iter[u]=dlist[het].erase(iter[u]);
 h[u]=nh;
 if(nh==n)return;
 cnt[nh]++;
 iter[u]=dlist[nh].insert(dlist[nh].begin(),u);
 hst=max(hst,nowh=nh);
 llist[nh].push_back(u);
 }
}
inline ll hlpp(ll n,ll s,ll t) {
 if(s==t)return 0;

Last
update:
2021/07/14
18:24

2020-2021:teams:legal_string:
王智彪:网络流入门

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

 nowh=0;
 hst=0;
 h.assign(n,0);
 h[s]=n;
 iter.resize(n);
 for(ll i=0; i<n;
++i)if(i!=s)iter[i]=dlist[h[i]].insert(dlist[h[i]].begin(),i);
 cnt.assign(n,0);
 cnt[0]=n-1;
 e.assign(n,0);
 e[s]=INF;
 e[t]=-INF;
 for(ll i=0; i<(ll)a[s].size(); ++i)push(s,a[s][i]);
 relabel(n,t);
 for(ll u; nowh>=0;) {
 if(llist[nowh].empty()) {
 nowh--;
 continue;
 }
 u=llist[nowh].back();
 llist[nowh].pop_back();
 push(n,u);
 }
 return e[t]+INF;
}

 // 加边操作

 for(register int i=m; i>0; --i) {
 u=read(),v=read(),f=read();
 addEdge(u,v,f);
 }

至此洛谷的两道模板题（基础版和加强版）结束

补充：最小割

由最大流最小割定理知，最小割等于最大流，如果求割边数量，则要将每条边的容量变为 1 ，重新跑最
大流模板即可。

经典问题

现在有 n 个物品， 2 个集合 A 和 B ，如果将一个物品放入 A 集合产生了 a_{i} 的代价，放
入 B 集合会产生 b_{i} 的代价，还有 m 个限制条件形如 u_{i},v_{i},w_{i} ，其表示如果
u_{i},v_{i} 不在同一集合，会产生 w_{i} 的代价，每个物品必须且只能属于一个集合，求总共最

2026/01/14 05:22 9/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

小代价。

对于放在集合 A 产生的代价，我们可以从源点 s 向这个点连一条容量为 a_{i} 的边，对于放在集
合 B 产生的代价，我们可以从这个点向汇点 t 连一条容量为 b_{i} 的边，于是利用最小割的思想，
因为一个点只能属于一个集合，所以两条边至少要有一条被选中，不然会有从 s 到 t 的流。

而对于最后一种情况，不妨设 u_{i} 在 A 集合里, v_{i} 在 B 集合里，所以现在是 $s→u_{i}$ 和
$v_{i}→t$ 有边，而想要承担 w_{i} 的代价，我们只需要在 u_{i} , v_{i} 之间连一条 w_{i} 的
边，因为另一种情况也有可能，所以这条边要是双向的，于是图就构建完毕了。

代码练习

1.https://www.luogu.com.cn/problem/P1345

给定点总数 n ，边总数 m ，源点 s ，汇点 t ，边是双向边，问最少割掉多少个点才能让源点汇点失
去联系

很明显是一个最小割，但这里割的是点不是边，于是需要拆点（太长时间不做连基本操作都忘了的 wzb
是屑⋯）， 1 到 n 是出点，分别对应坐标 $+n$ 的 $n+1$ 到 $2×n$ 是入点，对于正常的 m 条边，
我们从 u 到 $v+n$ 连一条权值为 inf 的边，反向权值为 0 。因为是双向的，所以 v 到 $u+n$ 的
边也是 inf 的，反向权值为 0 。为 inf 的原因是我们不要割掉这种边，我们的目的是割掉入点和出
点之间的边，表示割掉这个点。而源点和汇点显然不需要割掉，所以对于其他的点我们都从入点到出点连
一条正向为 1 反向为 0 的边。

while(~scanf("%d %d %d %d",&n,&m,&s,&t)) {
 cnt=1;
 memset(head,0,sizeof(head));
 ll u,v;
 for(int i=1;i<=n;i++){
 if(i==s||i==t){
 addedge(i+n,i,inf);
 addedge(i,i+n,0);
 }else{
 addedge(i+n,i,1);
 addedge(i,i+n,0);
 }
 }
 for(int i=1; i<=m; i++) {
 u=Read();
 v=Read();
 addedge(u,v+n,inf);
 addedge(v+n,u,0);
 addedge(v,u+n,inf);
 addedge(u+n,v,0);
 }
 n<<=1;
 printf("%lld\n",ISAP());
 }

https://www.luogu.com.cn/problem/P1345

Last
update:
2021/07/14
18:24

2020-2021:teams:legal_string:
王智彪:网络流入门

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

2.https://www.luogu.com.cn/problem/P2857

给定 n 只牛和 m 个牛棚 $(n≤1000,m≤20)$ ， n 只牛每只都有自己的想法，将 m 个牛棚按照
喜欢程度进行排序，最后给出 m 个牛棚的容量，求在所有的分配方案中，让牛所居牛棚的座次最高与
最低的跨度最小

每只牛看做一个点，每个牛棚也看做一个点，再构造一个源点和汇点。首先牛棚容量是牛棚的点连到汇点，
容量为牛棚容量。源点连到各个牛，容量为 1 ，最后是牛和牛棚中间的边。注意到答案具有单调性，可
以二分解决，最小为 1 ，最大为 m ，对于每一个 mid ，可以把从第 i 到第 $i+mid-1$ 的牛棚和所
有的牛都连起来，容量为 1 ，如果跑出的最大流是 n ，证明所有的牛都能分进去，二分继续。这样点
数是 $O(n+m)$ ，边数是 $O(n×m)$ ，二分次数是 $O(logm)$ 的，每次要建 $O(m)$ 次图，但是由于各种
玄学优化以及实际数据较水，所以个位数 ms 就通过了。

bool check(int v) {
 for(int i=1; i<=m-v+1; i++) {
 cnt=1;
 memset(head,0,sizeof(head));
 s=m+n+1,t=m+n+2;
 for(int j=1; j<=n; j++) {
 addedge(s,j,1);
 addedge(j,s,0);
 }
 for(int j=1; j<=m; j++) {
 addedge(j+n,t,room[j]);
 addedge(t,j+n,0);
 }
 for(int j=1; j<=n; j++) {
 for(int k=i; k<=i+v-1; k++) {
 addedge(j,bj[j][k]+n,1);
 addedge(bj[j][k]+n,j,0);
 }
 }
 ll anss=ISAP();
 if(anss==n) return true;
 }
 return false;
}
int main() {
 while(~scanf("%d %d",&n,&m)) {
 for(int i=1; i<=n; i++) {
 for(int j=1; j<=m; j++) {
 scanf("%d",&bj[i][j]);
 }
 }
 for(int i=1; i<=m; i++) {
 scanf("%lld",&room[i]);
 }
 int l=1,r=m,ans=-1;
 while(l<=r) {
 int mid=l+r>>1;

https://www.luogu.com.cn/problem/P2857

2026/01/14 05:22 11/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(check(mid)) {
 ans=mid;
 r=mid-1;
 } else {
 l=mid+1;
 }
 }
 if(ans==-1) printf("%d\n",m);
 else printf("%d\n",ans);
 }
 return 0;
}

3.https://www.luogu.com.cn/problem/CF387D

定义一个有趣的图是：

1.存在一个点 u 有自环

2.这个点和其他所有点v都有边 (u,v) 和边 (v,u) 。

3.其他所有点的入度和出度刚好为 2 。

4.没有重边

保证输入没有重边

现在可以进行增加一条边或者删除一条边的操作，问给定一个图最少操作多少次才能把它变成一张有趣的
图。

首先我们遍历每一个点，让它作为结点 u 。对于自环和所有的那两条边，缺少则添加它。对于其他的点，
因为要保证这些点的入度出度都为 2 ，因为有 $n-1$ 个点，发现正好要 $n-1$ 条边。并且相当于每一个
点都只有一条边进入和一条边发出，所以我们可以拆点并用网络流或者二分图来解决。假设网络流跑出的
结果是 $tmpans$ ，代表最多有这些边是有用的，其他边要删去，所以要删掉原来和 u 无关的所有边的
数量 $-tmpans$ ，还要补足 $n-1-tmpans$ 条边，并且补足这些边一定有一组解是满足题意的。三种答案
加起来即为所求。复杂度 $O(mn^{\frac 3 2})$ 。

int main() {
 while(~scanf("%d %d",&n,&m)) {
 for(int i=1,u,v; i<=m; i++) {
 u=Read();
 v=Read();
 mapp[u][v]++;
 }
 int final_ans=INT_MAX;
 for(int i=1; i<=n; i++) {
 int anss=0;
 if(!mapp[i][i]) anss++;
 for(int j=1; j<=n; j++) {
 if(j==i) continue;
 if(!mapp[j][i]) anss++;
 if(!mapp[i][j]) anss++;

https://www.luogu.com.cn/problem/CF387D

Last
update:
2021/07/14
18:24

2020-2021:teams:legal_string:
王智彪:网络流入门

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

 }
 memset(head,0,sizeof(head));
 cnt=1;
 int cntt=0;
 for(int j=1; j<=n; j++) {
 if(j==i) continue;
 for(int k=1; k<=n; k++) {
 if(k==i) continue;
 if(mapp[j][k]) {
 cntt++;
 addedge(j,k+n,1);
 addedge(k+n,j,0);
 }
 }
 }
 s=i,t=i+n;
 for(int j=1;j<=n;j++){
 addedge(s,j,1);
 addedge(j,s,0);
 }
 for(int j=1;j<=n;j++){
 addedge(j+n,t,1);
 addedge(t,j+n,0);
 }
 ll tmp_ans=ISAP();
 //printf("%lld\n",tmp_ans);
 int qwq=cntt-tmp_ans+n-1-tmp_ans+anss;
 if(qwq<final_ans){
 final_ans=qwq;
 }
 //printf("%d %d\n",qwq,final_ans);
 }
 printf("%d\n",final_ans);
 }
 return 0;
}

4.https://www.luogu.com.cn/problem/P1344

给定 n 个点， 1 是源点， n 是汇点，给出 m 条有向边，每条边有割掉的代价，我们想让代价最
小，并且找到代价最小的前提下割掉最少的边。

割掉最少的边貌似之前有提过，将所有的边权改为 1 ，跑一遍网络流，但是这样不一定是最大流。于是
我们把原来的容量乘一个很大的权值最后再加 1 ，因为权值很大，剩下的 1 不会改变最大流的值（除
以原来的权值即可），而又通过最小割的理论得到结果必然是切掉最少的边的结果。注意数据范围把
inf 设大一点即可。

int main() {
 while(~scanf("%d %d",&n,&m)) {
 ll w;

https://www.luogu.com.cn/problem/P1344

2026/01/14 05:22 13/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

 cnt=1;
 for(int i=1,u,v; i<=m; i++) {
 u=Read();
 v=Read();
 scanf("%lld",&w);
 addedge(u,v,(m+1)*w+1);
 addedge(v,u,0);
 }
 s=1,t=n;
 ll tmp=ISAP();
 printf("%lld %lld\n",tmp/(m+1),tmp%(m+1));
 }
 return 0;
}

5.https://www.luogu.com.cn/problem/P3153

舞会上有 n 个男生和 n 个女生，每首曲子需要所有男女配对跳舞，但是有一些男女互相喜欢，其他
的都是互相不喜欢，要求每个男生和每个女生最多只能和 k 个不喜欢的异性跳舞，问最多能有多少首舞
曲？

答案显然具有单调性，因此二分解之，比如二分到 v 。

难点是如何限制只能和 k 个不喜欢的异性跳舞，这里显然要把一个人拆成喜欢和不喜欢两个点，不然无
法限制不喜欢这个点。

然后是男女喜欢的话就男喜欢连向女喜欢，容量为 1 。男女不喜欢是男不喜欢连女不喜欢，容量为 1 。

最后解决源点汇点以及喜欢不喜欢之间边的问题，因为是对不喜欢有限制，而对喜欢不限制，所以是源点
连男喜欢 v 的边，然后男喜欢连男不喜欢 k 的边，女那边同理，跑一遍最大流，如果等于 $n×v$ ，
则说明可以跳 v 首，反之不可，于是此题可解。

string str;
int mapp[52][52];

bool check(int v) {
 cnt=1;
 memset(head,0,sizeof(head));
 for(int i=1; i<=n; i++) {
 addedge(s,i,v);
 addedge(i,s,0);
 addedge(i,i+n,m);
 addedge(i+n,i,0);
 addedge(i+3*n,t,v);
 addedge(t,i+3*n,0);
 addedge(i+2*n,i+3*n,m);
 addedge(i+3*n,i+2*n,0);
 }
 for(int i=1; i<=n; i++) {
 for(int j=1; j<=n; j++) {
 if(mapp[i][j]) {

https://www.luogu.com.cn/problem/P3153

Last
update:
2021/07/14
18:24

2020-2021:teams:legal_string:
王智彪:网络流入门

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

 addedge(i,j+3*n,1);
 addedge(j+3*n,i,0);
 } else {
 addedge(i+n,j+n*2,1);
 addedge(j+n*2,i+n,0);
 }
 }
 }
 ll tmpans=ISAP();
 if(tmpans==v*n) return true;
 return false;
}

int main() {
 while(~scanf("%d %d",&n,&m)) {
 for(int i=1; i<=n; i++) {
 cin>>str;
 for(int j=0; j<n; j++) {
 if(str[j]=='Y') mapp[i][j+1]=1;
 }
 }
 int l=0,r=1e9,ans=0;
 s=4*n+1,t=4*n+2;
 while(l<=r) {
 int mid=(l+r)>>1;
 if(check(mid)) {
 l=mid+1;
 ans=mid;
 } else {
 r=mid-1;
 }
 }
 printf("%d\n",ans);
 }
 return 0;
}

6.https://www.luogu.com.cn/problem/P3872

给出 N 部电影和依赖总数 M ，某人对每部电影都有一个体验值，依赖关系指的是对于一个有序对
(A,B) 和一个值 C ，如果看了 A 没看 B ，则体验值减少 C 。求最大体验值。这里原始的体验值
范围是 $[-1000,1000]$ 。电影数不超过 100 。

有负数怎么建图呢？这里对于体验值正的电影，我们从源点连到这个电影代表的点，负数先不管，对于有
序对 (A,B) 和值 C ，我用直觉从 A 到 B 连了一个权值为 C 的边。

剩下是原始体验值为负的情况，貌似还没出现汇点，我尝试着把这些点连向汇点，权值为给定值的相反数。
这时如果对这张图跑最大流，最小割貌似是将所有的体验值正的电影选定的情况下，为了保证最后体验值
最大，舍弃的最少的情况。

具体地说，舍弃从源点开始的边表示退掉体验值为正的那部电影，舍弃电影之间的边表示就是看 A 不看

https://www.luogu.com.cn/problem/P3872

2026/01/14 05:22 15/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

B ，舍弃到汇点的边表示为了不舍弃 C 而看 B 。所以用正的总量-最小割即为所求。

int main() {
 while(~scanf("%d %d",&n,&m)) {
 cnt=1;
 s=n+1,t=n+2;
 ll sum=0;
 for(int i=1,tmp; i<=n; i++) {
 tmp=Read();
 if(tmp>0) {
 addedge(s,i,tmp);
 addedge(i,s,0);
 sum+=tmp;
 } else {
 addedge(i,t,-tmp);
 addedge(t,i,0);
 }
 }
 for(int i=1,u,v,w;i<=m;i++){
 u=Read();v=Read();w=Read();
 addedge(u,v,w);
 addedge(v,u,0);
 }
 printf("%lld\n",sum-ISAP());
 }
 return 0;
}

7.https://www.luogu.com.cn/problem/P4313

经典问题。大意：一个班坐成 $n×m$ 的矩阵，每个人选文科会获得一种满意值，选理科会获得另一种满
意值，这个人和周围（上下左右）的人都选理科会额外获得第三种满意值，都选文科会额外获得第四种满
意值，问如何让满意值最大。

仿照上一题，我们先将所有的满意值相加，再利用最小割减下去。对于一个点因为没有别的限制，所以不
需要拆点，对于文科需要将源点连到这个点，理科是这个点连到汇点。

后两种额外的需要自己和周围的人都选同一科，是且的关系。并且由于我们建图的意义是割掉哪条边代表
排除哪条边代表的那种情况，只有把这个奖励单独作为一个点，并且如果是文科，从源点连到这个点，权
值为奖励值，奖励点分别和那几个座位代表的点相连，权值为 inf ，才能使得如果有一个点不连源点则
一定连了汇点，那么会有流从源点到奖励点再到那个点最后到汇点，只能将这个奖励的流割掉，所以满足
题意。

int dx[5]={0,1,-1,0,0};
int dy[5]={0,0,0,1,-1};

bool check(int x,int y){
 return x>=1&&x<=n&&y>=1&&y<=m;
}

https://www.luogu.com.cn/problem/P4313

Last
update:
2021/07/14
18:24

2020-2021:teams:legal_string:
王智彪:网络流入门

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

int main() {
 while(~scanf("%d %d",&n,&m)) {
 cnt=1;
 memset(head,0,sizeof(head));
 s=n*m*4+1,t=n*m*4+2;
 ll sum=0;
 for(int i=1,tmp; i<=n; i++) {
 for(int j=1; j<=m; j++) {
 tmp=Read();
 sum+=tmp;
 addedge(s,(i-1)*m+j,tmp);
 addedge((i-1)*m+j,s,0);
 }
 }
 for(int i=1,tmp; i<=n; i++) {
 for(int j=1; j<=m; j++) {
 tmp=Read();
 sum+=tmp;
 addedge((i-1)*m+j,t,tmp);
 addedge(t,(i-1)*m+j,0);
 }
 }
 for(int i=1,tmp; i<=n; i++) {
 for(int j=1; j<=m; j++) {
 tmp=Read();
 sum+=tmp;
 addedge(s,(i-1+n)*m+j,tmp);
 addedge((i-1+n)*m+j,s,0);
 for(int k=0;k<5;k++){
 int xx=i+dx[k],yy=j+dy[k];
 if(check(xx,yy)){
 addedge((i-1+n)*m+j,(xx-1)*m+yy,inf);
 addedge((xx-1)*m+yy,(i-1+n)*m+j,0);
 }
 }
 }
 }
 for(int i=1,tmp; i<=n; i++) {
 for(int j=1; j<=m; j++) {
 tmp=Read();
 sum+=tmp;
 addedge((i-1+2*n)*m+j,t,tmp);
 addedge(t,(i-1+2*n)*m+j,0);
 for(int k=0;k<5;k++){
 int xx=i+dx[k],yy=j+dy[k];
 if(check(xx,yy)){
 addedge((xx-1)*m+yy,(i-1+2*n)*m+j,inf);
 addedge((i-1+2*n)*m+j,(xx-1)*m+yy,0);
 }
 }

2026/01/14 05:22 17/17 网络流入门

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 }
 printf("%lld\n",sum-ISAP());
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

Last update: 2021/07/14 18:24

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:%E7%BD%91%E7%BB%9C%E6%B5%81%E5%85%A5%E9%97%A8&rev=1626258279

	网络流入门
	算法简介
	几个概念
	容量
	流
	剩余容量
	残量网络
	增广路

	算法思想
	EK
	$Dinic$
	$ISAP$
	预流推进
	$HLPP$

	补充：最小割
	经典问题

	代码练习

