
2026/01/14 03:44 1/6 AC自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

AC自动机

算法思想

AC 自动机 $=TRIE+KMP$

所有的模式串构成一棵 $TRIE$ 。并在 $Trie$ 树上所有结点构造失配指针： KMP 思想。

为了进行多模式匹配。

$Trie$ 构建操作和 $trie$ 的 $insert$ 的操作一模一样，其中每个结点代表某个字符串（也有可能是很多
个）的某个前缀。

构建 $fail$ 指针：

和 KMP 一样，是失配的时候用于跳转的指针。

KMP 要求最长相同真前后缀，但是 AC 自动机只需要相同后缀。即状态 u 的 $fail$ 指针指向另一
个状态 v ， v 是 u 的最长后缀，有可能来自不同的字符串。

现在假设字典树中有一个结点 u ， u 的父节点是 p ， p 通过字符 c 的边指向 u 。即 $ch[p]
[c]=u$ 。现在分情况讨论：

如果 $ch[fail[p]] [c]$ 存在，那么相当于失配那个状态后面也恰好有字符 c 。所以现在这个状态往下延伸
字符 c ，刚好失配那里也可以匹配到，于是 u 的 $fail$ 指针指向 $ch[fail[p]] [c]$ 。

如果 $ch[fail[p]] [c]$ 不存在，说明这个失配的状态不满足，需要继续跳 $fail$ ，就是 $ch[fail[fail[p]]]
[c]$ ，一直重复下去，直到 $fail$ 指针跳到根节点，此时没有办法，将 $fail$ 指针指向根节点。

算法实现

建树函数 $build()$ ：目标是构建 $fail$ 指针以及构建自动机。我们采用 BFS 来遍历字典树。

先给根节点自己连 $fail$ 指针，指向自己，接着对根节点连出去的边开始操作。

如果根节点连向某个字符，就把 $fail$ 指针指到根节点，毕竟长度为 1 ，失配就无了。然后把这个深度
为 1 的点入队。

接下来，当队列不为空时我们每次取队首，就是 BFS 啦，并且取出的点在之前已经求过了 $fail$ 指针。
之后这个点就相当于上文提到的 p 。如果他连出了某一条边，那么他这个儿子的失配位置，就是他的失
配位置向下连这个字符的边（这里按照上面所说应该分类讨论不存在一直跳 $fail$ ，但是我们做了一些操
作简化），并且将这个儿子入队。如果不存在这个儿子，就连到失配位置的对应字符的边，这样前一种指
向的边其实已经是一直跳 $fail$ 的结果了，相当于路径压缩。

匹配函数 $query()$ ：

循环遍历匹配串，用一个变量 $nownode$ 记录当前位置，利用 $fail$ 指针找出所有匹配的模式串，累加
到答案中，然后清零。再来一个 $tmpnode$ 一直跳 $fail$ 指针，而不动 $nownode$ 。

Last
update:
2021/07/23
23:35

2020-2021:teams:legal_string:王
智彪:ac自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627054509

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:44

时间复杂度：连了 $trie$ 图的复杂度是 $O(\sum |s_{i}|+n|\sum|+|S|)$ ， n 是 AC 自动机的结点数
目，最大可以到 $O(\sum |s_{i}|)$ 。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxn 1000100
//一种理解是AC自动机 是把kmp放在了Trie树上
//end数组的意思是以这个节点为结尾的单词一共有多少个（任意字母都算在内）
//nxt数组的意思是节点编号的以不同字母结尾的下一个节点编号
struct Trie {
 int nxt[maxn][26],fail[maxn],end[maxn],vis[maxn];
 int root,size;
 int new_node() {
 for(int i=0; i<26; i++) nxt[size][i]=-1;
 end[size++]=0;
 return size-1;
 }
 void init() {
 size=0;
 root=new_node();
 memset(vis,0,sizeof(vis));
 }
 void insert(char tmp[]) {
 int len=strlen(tmp),now_node=root;
 for(int i=0; i<len; i++) {
 if(nxt[now_node][tmp[i]-'a']==-1) nxt[now_node][tmp[i]-
'a']=new_node();
 now_node=nxt[now_node][tmp[i]-'a'];
 }
 end[now_node]++;
 }
 void build_Trie() {
 queue <int> q_trie;
 fail[root]=root;
 for(int i=0; i<26; i++) {
 if(!(~nxt[root][i])) nxt[root][i]=root;
 else {
 fail[nxt[root][i]]=root;
 q_trie.push(nxt[root][i]);
 }
 }
 while(!q_trie.empty()) {
 int now_node=q_trie.front();
 q_trie.pop();
 for(int i=0; i<26; i++) {
 if(!(~nxt[now_node][i]))
nxt[now_node][i]=nxt[fail[now_node]][i];
 else {

2026/01/14 03:44 3/6 AC自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

 fail[nxt[now_node][i]]=nxt[fail[now_node]][i];
 q_trie.push(nxt[now_node][i]);
 }
 }
 }
 }
 int query(char tmp[]) {
 int len=strlen(tmp),now_node=root,ans=0;
 for(int i=0; i<len; i++) {
 now_node=nxt[now_node][tmp[i]-'a'];
 int tmp_node=now_node;
 while(tmp_node!=root&&!vis[tmp_node]) {
 ans+=end[tmp_node];
 end[tmp_node]=0;
 vis[tmp_node]=1;
 tmp_node=fail[tmp_node];
 }
 }
 return ans;
 }
} AC;
int n;
char str[1000100];
int main() {
 scanf("%d",&n);
 AC.init();
 for(int i=0; i<n; i++) {
 scanf("%s",str);
 AC.insert(str);
 }
 AC.build_Trie();
 scanf("%s",str);
 printf("%d",AC.query(str));
 return 0;
}

如果这么写就裂开了。因为对于都是 a 的字符串，跳 $fail$ 会一个一个跳，复杂度可能到平方级别。但
注意到，我们每次都要跳 $fail$ ，于是我们只需要把 $fail$ 指针指向的点作为该节点的父亲，然后树形
dp 一下，就好了。

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
#define maxn 1001000
int mp[maxn];
int es,first[maxn];
struct Edge {
 int to,next;
}edge[maxn];

Last
update:
2021/07/23
23:35

2020-2021:teams:legal_string:王
智彪:ac自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627054509

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:44

void add(int fr,int to) {
 edge[++es].to = to;
 edge[es].next = first[fr];
 first[fr] = es;
}
struct Trie {
 int
root,size,maxv,nxt[maxn][27],fail[maxn],vis[maxn],pos[maxn],L[maxn],last[ma
xn],num[maxn],ipos[maxn];
 int new_node() {
 for(int i=0; i<27; i++) nxt[size][i]=-1;
 size++;
 //end[size++]=0;
 return size-1;
 }
 void init() {
 for(int i=0; i<=size; i++) {
 vis[i]=0,pos[i]=0;//end[i]=0;
 }
 maxv=0;
 size=0;
 root=new_node();
 }
 void insert2(char tmp[],int nu) {
 int len=strlen(tmp),now_node=root;
 for(int i=0; i<len; i++) {
 if(nxt[now_node][tmp[i]-'a']==-1) nxt[now_node][tmp[i]-
'a']=new_node();
 now_node=nxt[now_node][tmp[i]-'a'];
 }
 if(!pos[now_node]) {
 pos[now_node]=nu;
 mp[nu]=nu;
 ipos[nu]=now_node;
 } else {
 mp[nu]=mp[pos[now_node]];
 ipos[nu]=now_node;
 }
 L[nu]=len;
 }
 void build_Trie() {
 queue <int> q_trie;
 fail[root]=root;
 for(int i=0; i<27; i++) {
 if(!(~nxt[root][i])) nxt[root][i]=root;
 else {
 fail[nxt[root][i]]=root;
 q_trie.push(nxt[root][i]);
 }
 }

2026/01/14 03:44 5/6 AC自动机

CVBB ACM Team - https://wiki.cvbbacm.com/

 while(!q_trie.empty()) {
 int now_node=q_trie.front();
 q_trie.pop();
 for(int i=0; i<27; i++) {
 if(!(~nxt[now_node][i]))
nxt[now_node][i]=nxt[fail[now_node]][i];
 else {
 fail[nxt[now_node][i]]=nxt[fail[now_node]][i];
 q_trie.push(nxt[now_node][i]);
 }
 }
 }
 }
 int query2(char tmp[],int len) {
 int ansss=0;
 int now_node=root;
 for(int i=1; i<=len; i++) {
 now_node=nxt[now_node][tmp[i]-'a'];
 int tmp_node=now_node;
 while(tmp_node>0) {
 if(pos[tmp_node]) {
 num[pos[tmp_node]]++;
 }
 tmp_node=fail[tmp_node];
 }
 }
 return ansss;
 }
 void query3(char tmp[],int len) {
 int now_node=root;
 for(int i=1;i<=len;i++) {
 now_node=nxt[now_node][tmp[i]-'a'];
 num[now_node]++;
 }
 }
 void build() {
 for(int i=1;i<=size;i++) {
 add(fail[i],i);
 }
 }
 void dfs(int now) {
 //printf("%d\n",now);
 for(int i=first[now];~i;i=edge[i].next) {
 int to=edge[i].to;
 dfs(to);
 num[now]+=num[to];
 }
 }
} AC;
char str[maxn];
char str1[maxn];

Last
update:
2021/07/23
23:35

2020-2021:teams:legal_string:王
智彪:ac自动机

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627054509

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:44

int main() {
 memset(first,-1,sizeof(first));
 int t;
 scanf("%d",&t);
 AC.init();
 for(int i=1;i<=t;i++) {
 scanf("%s",str);
 AC.insert2(str,i);
 }
 scanf("%s",str1+1);
 int len1=strlen(str1+1);
 AC.build_Trie();
 AC.query3(str1,len1);
 AC.build();
 AC.dfs(0);
 for(int i=1;i<=t;i++) {
 printf("%d\n",AC.num[AC.ipos[mp[i]]]);
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627054509

Last update: 2021/07/23 23:35

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:ac%E8%87%AA%E5%8A%A8%E6%9C%BA&rev=1627054509

	AC自动机
	算法思想
	算法实现

