
2026/02/02 19:31 1/6 FWT快速沃尔什变换

CVBB ACM Team - https://wiki.cvbbacm.com/

FWT快速沃尔什变换

算法思想

或卷积

大概长这个样子： $C_{k} = \sum_{i|j=k} A_{i}×B_{j}$

满足交换律、结合律 $(A+B)|C=A|C+B|C$ ，均为显然

几个重要的结论：

$FWT(A+B) = FWT(A) + FWT(B)$

$FWT(A) = (FWT(A_{0}),FWT(A_{0})+FWT(A_{1}))$ ， $A_{0}$ 表示最高位为 $0$ 的部分，也就是前
$2^{n-1}$ 项； $A_{1}$ 表示最高位为 $1$ 的部分，也就是后 $2^{n-1}$ 项。

对于 $or$ 卷积来说， $FWT(A)[I] = \sum_{j|i=i}A[j]$ 。

此时用数学归纳法有：

$FWT(A|B)$

$=FWT((A|B)_{0},(A|B)_{1})$

$=FWT(A_{0}|B_{0},A_{0}|B_{1}+A_{1}|B_{0}+A_{1}|B_{1})$

$=(FWT(A_{0}|B_{0}),FWT(A_{0}|B_{0}+A_{0}|B_{1}+A_{1}|B_{0}+A_{1}|B_{1}))$

$=(FWT(A_{0})×FWT(B_{0}),FWT(A_{0})×FWT(B_{0})+FWT(A_{0})×FWT(B_{1})+FWT(A_{1})×FW
T(B_{0})+FWT(A_{1})×FWT(B_{1}))$

$=(FWT(A_{0})×FWT(B_{0}),(FWT(A_{0})+FWT(A_{1}))×(FWT(B_{0})+FWT(B_{1})))$

$=(FWT(A_{0},FWT(A_{0}+A_{1})))×(FWT(B_{0},FWT(B_{0}+B_{1})))$

$=FWT(A)×FWT(B)$

得证

所以类似于 $FFT$ ，也有一个叫做 $IFWT$ 的东西。

$IFWT(A)=(IFWT(A_{0}),IFWT(A_{1})-IFWT(A_{0}))$

和卷积

和或卷积类似

结论：



Last
update:
2021/07/21
15:00

2020-2021:teams:legal_string:王
智彪:fwt https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:fwt&rev=1626850811

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:31

$FWT(A)=(FWT(A_{0}+A_{1}),FWT(A_{1}))$

$FWT(A+B)=FWT(A)+FWT(B)$

同样的数学归纳法可以证明和卷积成立

$IFWT(A)=(IFWT(A_{0})-IFWT(A_{1}),IFWT(A_{1}))$

异或卷积

结论：

$FWT(A)=(FWT(A_{0})+FWT(A_{1}),FWT(A_{0})-FWT(A_{1}))$

$FWT(A+B)=FWT(A)+FWT(B)$

$IFWT(A)=({\frac {IFWT(A_{0})-IFWT(A_{1})} 2},{\frac {IFWT(A_{0})-IFWT(A_{1})} 2})$

算法实现

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=1500000;
 
int MOD=998244353;
int inv2=(MOD+1)>>1,N;
ll a1[MAXN],b1[MAXN],a2[MAXN],b2[MAXN],a3[MAXN],b3[MAXN];
 
void or_FWT(ll *P,int opt) {
    for(int i=2; i<=N; i<<=1)
        for(int p=i>>1,j=0; j<N; j+=i)
            for(int k=j; k<j+p; ++k)
                P[k+p]+=P[k]*opt,P[k+p]=(P[k+p]+MOD)%MOD;
}
 
void and_FWT(ll *P,int opt) {
    for(int i=2; i<=N; i<<=1)
        for(int p=i>>1,j=0; j<N; j+=i)
            for(int k=j; k<j+p; ++k)
                P[k]+=P[k+p]*opt,P[k]=(P[k]+MOD)%MOD;
}
 
void xor_FWT(ll *P,int opt) {//如果不是在模意义下的话，把逆元变成直接除二就好了。
    for(int i=2; i<=N; i<<=1)
        for(int p=i>>1,j=0; j<N; j+=i)
            for(int k=j; k<j+p; ++k) {
                ll x=P[k],y=P[k+p];



2026/02/02 19:31 3/6 FWT快速沃尔什变换

CVBB ACM Team - https://wiki.cvbbacm.com/

                P[k]=(x+y)%MOD;
                P[k+p]=(x-y+MOD)%MOD;
if(opt==-1)P[k]=1ll*P[k]*inv2%MOD,P[k+p]=1ll*P[k+p]*inv2%MOD;
            }
}
 
int main() {
    scanf("%d",&N);
    N=1<<N;
    for(int i=0;i<N;i++) {
        scanf("%lld",&a1[i]);
        a2[i]=a3[i]=a1[i];
    }
    for(int i=0;i<N;i++) {
        scanf("%lld",&b1[i]);
        b2[i]=b3[i]=b1[i];
    }
    or_FWT(a1,1);or_FWT(b1,1);
    for(int i=0;i<N;i++) a1[i]=a1[i]*b1[i]%MOD;
    or_FWT(a1,-1);
    and_FWT(a2,1);and_FWT(b2,1);
    for(int i=0;i<N;i++) a2[i]=a2[i]*b2[i]%MOD;
    and_FWT(a2,-1);
    xor_FWT(a3,1);xor_FWT(b3,1);
    for(int i=0;i<N;i++) a3[i]=a3[i]*b3[i]%MOD;
    xor_FWT(a3,-1);
    for(int i=0;i<N;i++) {
        printf("%lld ",a1[i]);
    }
    putchar(10);
    for(int i=0;i<N;i++) {
        printf("%lld ",a2[i]);
    }
    putchar(10);
    for(int i=0;i<N;i++) {
        printf("%lld ",a3[i]);
    }
    putchar(10);
    return 0;
}

代码练习

1.https://www.luogu.com.cn/problem/CF1119H

题目大意

给定 $n$ 个三元组，以及三个数 $x,y,z$ 。每个三元组的内容为 ${a_{i},b_{i},c_{i}}$ 。表示这个组里面

https://www.luogu.com.cn/problem/CF1119H


Last
update:
2021/07/21
15:00

2020-2021:teams:legal_string:王
智彪:fwt https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:fwt&rev=1626850811

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:31

有 $x$ 个 $a_{i}$ ， $y$ 个 $b_{i}$ ， $z$ 个 $c_{i}$ 。再给一个数 $N$ ，让求对于 $0$ 到 $2^{N}-1$ ，
分别有多少种方案，使得在每个三元组中各选出一个数字，异或的结果等于这个数字，方案数对
$998244353$ 取模。其中 $n≤10^{5},N≤17$

题目解析

貌似可以把元组中的数字理解为某个多项式中 $a_{i}$ 次幂的系数是 $x$ ， $b_{i}$ 次幂的系数是 $y$ ，
$c_{i}$ 次幂的系数是 $z$ 。之后对于 $n$ 个多项式，顺次进行 $FWT$ ，最后再 $IFWT$ 。但是想法很美
好，这样的复杂度是 $O(nk2^{k})$ ，显然是爆炸了。

我们再回去观察题目，为什么是三元组，也就是说一个多项式中只有三项的系数不为零，且都固定为
$x,y,z$ 。则 $FWT(F_{k})[i]=c(i,a_{k})x+c(i,b_{k})y+c(i,c_{k})z$ ，其中 $c(i,j)$ 表示异或卷积从 $j$ 到
$i$ 的变换系数。而 $c(i,j)=(-1)^{cnt(i\&j)}$ ，所以这个式子就是
$FWT(F_{k})[i]=(-1)^{cnt(i\&a_{k})}x+(-1)^{cnt(i\&b_{k})}y+(-1)^{cnt(i\&c_{k})}z$ 。于是现在我
们可以如此算出每一个式子的 $FWT$ ，再求 $IFWT$ ，但是这样的复杂度仍然是 $O(n+k)2^{k}$ ，仍然是
爆炸的。所以到这里还远没有结束。

我们发现现在要求的是 $S[i]=\prod_{k=1}^{n} FWT(F_{k})[i]$ 。将每一项的系数都求出来，最后再
$IFWT$ 就可以了。又因为对于等号右侧的每一项，一共只有八种可能，即 $x,y,z$ 可正可负。当我们把
每一项出现的次数求出，就可以利用快速幂求得此项答案，这样单独一项系数的复杂度就由 $O(n)$ 降为
$O(logn)$ ，就可以通过了。这里有一个小技巧，我们可以控制其中一项的系数为正，比如我们将每个元组
的三个数都对 $a$ 这个数异或，这样元组变为 $(0,b_{k}⊕a_{k},c_{k}⊕a_{k})$ 。我们最后再把结果的
次数异或回去所有的 $a_{k}$ 就是真正的次数了。这样所有的 $a$ 被我们控制为0，和任何的 $i$ 取与都
是 $0$ 。于是八种可能变成了四种可能，即 $x+y+z,x+y-z,x-y+z,x-y-z$ 。

我们分别设这四种出现的次数为 $c_{1},c_{2},c_{3},c_{4}$ 。显然四者之和为 $n$ 。我们接下来用待定
系数法的思想，比如我们把 $y$ 重新取为 $1$ ，其余设为 $0$ 。这样求一个 $FWT$ 出来，对应 $i$ 次方
的系数是所有 $(-1)^{cnt(i\&b_{k})}$ 的和。这个值是 $c_{1}+c_{2}-c_{3}-c_{4}$ 。同理可以对 $z$
操作一下，这样我们一共有三个式子。最后一个式子是令 $b_{k}⊕c_{k}$ 的系数为 $1$ 。于是这个就是
前两种情况的卷积，又因为 $FWT$ 是可以乘起来的，所以它就是
$(-1)^{cnt(i\&b_{k})}(-1)^{cnt(i\&c_{k})}$ 。这个和对应的是 $c_{1}-c_{2}-c_{3}+c_{4}$ 。所以四个
方程都有了，解个方程，最后快速幂一搞，最终复杂度是 $O((k+logn)2^{k})$ ，可以通过。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MAXN=2000010;
 
int MOD=998244353;
int inv2=(MOD+1)>>1,N,n,x,y,z;
ll a1[MAXN],b1[MAXN],a2[MAXN],b2[MAXN],a3[MAXN],b3[MAXN];
 
ll quick_power(ll a,ll t,ll mod) {
    ll ans=1;
    while(t) {
        if(t&1)ans=ans*a%mod;
        a=a*a%mod;
        t>>=1;
    }



2026/02/02 19:31 5/6 FWT快速沃尔什变换

CVBB ACM Team - https://wiki.cvbbacm.com/

    return ans;
}
 
void or_FWT(ll *P,int opt) {
    for(int i=2; i<=N; i<<=1)
        for(int p=i>>1,j=0; j<N; j+=i)
            for(int k=j; k<j+p; ++k)
                P[k+p]+=P[k]*opt,P[k+p]=(P[k+p]+MOD)%MOD;
}
 
void and_FWT(ll *P,int opt) {
    for(int i=2; i<=N; i<<=1)
        for(int p=i>>1,j=0; j<N; j+=i)
            for(int k=j; k<j+p; ++k)
                P[k]+=P[k+p]*opt,P[k]=(P[k]+MOD)%MOD;
}
 
void xor_FWT(ll *P,int opt) {
    for(int i=2; i<=N; i<<=1)
        for(int p=i>>1,j=0; j<N; j+=i)
            for(int k=j; k<j+p; ++k) {
                ll x=P[k],y=P[k+p];
                P[k]=(x+y)%MOD;
                P[k+p]=(x-y+MOD)%MOD;
if(opt==-1)P[k]=1ll*P[k]*inv2%MOD,P[k+p]=1ll*P[k+p]*inv2%MOD;
            }
}
 
int main() {
    scanf("%d %d",&n,&N);
    N=1<<N;
    int sum=0;
    scanf("%d %d %d",&x,&y,&z);
    for(int i=0,a,b,c; i<n; i++) {
        scanf("%d %d %d",&a,&b,&c);
        sum^=a;
        b^=a;
        c^=a;
        a1[b]++;
        a2[c]++;
        a3[b^c]++;
    }
    xor_FWT(a1,1);
    xor_FWT(a2,1);
    xor_FWT(a3,1);
    for(int i=0; i<N; i++) {
        int c1=(1ll*n+a1[i]+a2[i]+a3[i])%MOD/4;
        int c2=(1ll*n+a1[i]-c1-c1+MOD)%MOD/2;
        int c3=(1ll*n+a2[i]-c1-c1+MOD)%MOD/2;
        int c4=(1ll*n+a3[i]-c1-c1+MOD)%MOD/2;
        ll ans=1;



Last
update:
2021/07/21
15:00

2020-2021:teams:legal_string:王
智彪:fwt https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:fwt&rev=1626850811

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:31

        ans=ans*quick_power((1ll*x+y+z),c1,MOD)%MOD;
        ans=ans*quick_power((1ll*x+y-z+MOD)%MOD,c2,MOD)%MOD;
        ans=ans*quick_power((1ll*x-y+z+MOD)%MOD,c3,MOD)%MOD;
        ans=ans*quick_power((1ll*x-y-z+MOD*2)%MOD,c4,MOD)%MOD;
        b1[i]=ans;
    }
    xor_FWT(b1,-1);
    for(int i=0;i<N;i++) {
        printf("%lld ",b1[i^sum]);
    }
    return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:fwt&rev=1626850811

Last update: 2021/07/21 15:00

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%8E%8B%E6%99%BA%E5%BD%AA:fwt&rev=1626850811

	FWT快速沃尔什变换
	算法思想
	或卷积
	和卷积
	异或卷积

	算法实现
	代码练习
	题目大意
	题目解析



