
2026/01/14 06:54 1/2 H. travel

CVBB ACM Team - https://wiki.cvbbacm.com/

D. Diameter Counting

题意

求所有 n 标号树的直径和。

题解

考虑求树的直径的过程，可以先删去所有叶子结点，得到一棵新树，称为一次操作。然后再不断对新树进
行操作，知道最后剩下一个或两个结点。

此时如果只剩下一个结点，则树的直径为操作次数 $\times 2$。如果剩下两个结点，则树的直径为操作次
数 $\times 2+1$。

考虑通过逆算法反向构建树。设 $f(i,j)$ 表示有 j 个叶子结点的 i 标号树个数，假设上一步操作删除
了 $k(k\ge j)$ 个叶子。

于是问题等价于给这 k 个叶子找一个父结点，使得原来的 j 个叶子结点至少有一个儿子。

同时对于这 $i+k$ 个结点，标号是任意的，对所有 $i+k$ 标号树而言，删去 k 叶子结点得到的树的标
号方式实际上有 ${i+k\choose i}f(i,j)$ 种。

设 $g(i,j,k)$ 表示长度为 k 且每个位置有 i 种可选取值且特定的 j 个值至少出现一次的序列个数，
于是有

$$ f(i+k,k)\gets g(i,j,k)f(i,j){i+k\choose i} $$

接下来考虑求 $g(i,j,k)$，可以考虑序列前 $k-1$ 位，如果此时 j 个特定值都出现了至少一次，则第 k
位可以任取，于是有

$$ g(i,j,k)\gets i\times g(i,j,k-1) $$

如果前 $k-1$ 位只有 $j-1$ 个特殊值出现了至少一次，则显然前 $k-1$ 位的取值只有 $i-1$ 种，同时要从
j 个特殊值中确定一个放在第 k 位，有

$$ g(i,j,k)\gets j\times g(i-1,j-1,k-1) $$

最后设 $h(i,j)$ 表示有 j 个叶子的 i 标号树的直径之和。同样假设上一步操作删除了 $k(k\ge j)$ 个叶
子。

考虑原有的树的直径和操作带来的直径 $+2$ 的新贡献，于是有

$$ h(i+k,k)\gets g(i,j,k){i+k\choose i}(h(i,j)+2f(i,j)) $$

另外所有 $h(i+k,k)\gets 2f(i,j)g(i,j,k){i+k\choose i}$ 也可以等价于 $h(i,j)\gets 2f(i,j)$。时间复杂度
$O\left(n^3\right)$。

const int MAXN=505;
int mod;
int quick_pow(int n,int k){

Last
update:
2021/08/18
15:39

2020-2021:teams:legal_string:
组队训练比赛记录:缓冲区

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:%E7%BC%93%E5%86%B2%E5%8C%BA&rev=1629272363

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:54

 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;
 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
int frac[MAXN],invf[MAXN];
int C(int n,int m){
 return 1LL*frac[n]*invf[m]%mod*invf[n-m]%mod;
}
int f[MAXN][MAXN],g[MAXN][MAXN][MAXN],h[MAXN][MAXN];
int main()
{
 int n=read_int();
 mod=read_int();
 frac[0]=1;
 _for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%mod;
 invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
 for(int i=MAXN-1;i;i--)
 invf[i-1]=1LL*invf[i]*i%mod;
 g[0][0][0]=1;
 _rep(i,1,n){
 g[i][0][0]=1;
 _rep(k,1,n)
 g[i][0][k]=1LL*g[i][0][k-1]*i%mod;
 _rep(j,1,i)_rep(k,j,n)
 g[i][j][k]=(1LL*g[i][j][k-1]*i+1LL*g[i-1][j-1][k-1]*j)%mod;
 }
 f[1][1]=f[2][2]=1;
 _rep(i,1,n)_rep(j,1,i)_rep(k,max(j,2),n-i)
 f[i+k][k]=(f[i+k][k]+1LL*f[i][j]*g[i][j][k]%mod*C(i+k,i))%mod;
 h[2][2]=1;
 _rep(i,3,n)_rep(j,1,i)
 h[i][j]=2LL*f[i][j]%mod;
 _rep(i,1,n)_rep(j,1,i)_rep(k,max(j,2),n-i)
 h[i+k][k]=(h[i+k][k]+1LL*h[i][j]*g[i][j][k]%mod*C(i+k,i))%mod;
 int ans=0;
 _rep(i,1,n)
 ans=(ans+h[n][i])%mod;
 enter(ans);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:%E7%BC%93%E5%86%B2%E5%8C%BA&rev=1629272363

Last update: 2021/08/18 15:39

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:%E7%BC%93%E5%86%B2%E5%8C%BA&rev=1629272363

	[D. Diameter Counting]
	D. Diameter Counting
	题意
	题解

