
2026/01/14 07:25 1/3 H. travel

CVBB ACM Team - https://wiki.cvbbacm.com/

E. Contamination

题意

二维平面中给定 n 个圆。接下来 q 个询问，每次询问给定 $P(x,y),Q(x,y),y_1,y_2$，问 P 是否可以
移动到 Q。

移动过程中不能进入圆的范围且 y 始终在 $[y_1,y_2]$。保证 P,Q 一定不属于任意一个圆，且任意两
圆都相离。

题解

不妨设 $P_x\le Q_x$。不难发现，P 可以移动到 Q 的充要条件为不存在一个圆 (x,y,r) 满足 $P_x\le
x\le Q_x$ 且 $y-r\le y_1,y+r\ge y_2$。

考虑扫描线维护答案，将所有询问按 y 排序，对每个圆，在 $y=y_i-r_i$ 时加入贡献，$y=y_i+r_i$ 时删
除贡献。

线段树维护 X 轴区间上每个位置的有效的圆的 $y+r$ 的最大值。于是题目转化为单点修改、区间查询。

对每个叶子额外开一个多重集维护该位置的 $y+r$ 的最大值即可，时间复杂度 $O((n+q)\log n)$。

const int MAXN=1e6+5,MAXQ=1e6+5,inf=2e9+5;
int lef[MAXN<<2],rig[MAXN<<2],s[MAXN<<2];
multiset<int> num[MAXN<<2];
void build(int k,int L,int R){
 lef[k]=L,rig[k]=R,s[k]=-inf;
 if(L==R)
 return;
 int M=L+R>>1;
 build(k<<1,L,M);
 build(k<<1|1,M+1,R);
}
void update(int k,int pos,int v,bool add){
 if(lef[k]==rig[k]){
 if(add){
 num[k].insert(v);
 s[k]=*num[k].rbegin();
 }
 else{
 num[k].erase(num[k].find(v));
 if(num[k].empty())
 s[k]=-inf;
 else
 s[k]=*num[k].rbegin();
 }
 return;
 }

Last
update:
2021/09/12
10:53

2020-2021:teams:legal_string:
组队训练比赛记录:缓冲区

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:%E7%BC%93%E5%86%B2%E5%8C%BA&rev=1631415192

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:25

 int mid=lef[k]+rig[k]>>1;
 if(mid>=pos)
 update(k<<1,pos,v,add);
 else
 update(k<<1|1,pos,v,add);
 s[k]=max(s[k<<1],s[k<<1|1]);
}
int query(int k,int L,int R){
 if(L<=lef[k]&&rig[k]<=R)
 return s[k];
 int mid=lef[k]+rig[k]>>1;
 if(mid>=R)
 return query(k<<1,L,R);
 else if(mid<L)
 return query(k<<1|1,L,R);
 else
 return max(query(k<<1,L,R),query(k<<1|1,L,R));
}
struct Node{
 int type,y,my;
 int idx,v1,v2;
 Node(int type=0,int y=0,int my=0,int idx=0,int xl=0,int xr=0){
 this->type=type;
 this->y=y;
 this->my=my;
 this->idx=idx;
 v1=xl;
 v2=xr;
 }
 bool operator < (const Node &b)const{
 if(y!=b.y)
 return y<b.y;
 else
 return type<b.type;
 }
}node[MAXN*2+MAXQ];
bool ans[MAXQ];
vector<int> mp;
int main(){
 int n=read_int(),q=read_int(),m=0;
 _for(i,0,n){
 int cx=read_int(),cy=read_int(),r=read_int();
 node[m++]=Node(0,cy-r,cy+r,cx);
 node[m++]=Node(2,cy+r,cy+r,cx);
 mp.push_back(cx);
 }
 _for(i,0,q){
 int
px=read_int(),py=read_int(),qx=read_int(),qy=read_int(),ymin=read_int(),yma
x=read_int();
 node[m++]=Node(1,ymin,ymax,i,min(px,qx),max(px,qx));

2026/01/14 07:25 3/3 H. travel

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 sort(mp.begin(),mp.end());
 mp.erase(unique(mp.begin(),mp.end()),mp.end());
 build(1,1,mp.size());
 sort(node,node+m);
 _for(i,0,m){
 Node opt=node[i];
 if(opt.type==0||opt.type==2){
 int p=lower_bound(mp.begin(),mp.end(),opt.idx)-mp.begin()+1;
 update(1,p,opt.my,opt.type==0);
 }
 else{
 int p1=lower_bound(mp.begin(),mp.end(),opt.v1)-mp.begin()+1;
 int p2=upper_bound(mp.begin(),mp.end(),opt.v2)-mp.begin();
 if(p1>p2)
 ans[opt.idx]=true;
 else
 ans[opt.idx]=(query(1,p1,p2)<opt.my);
 }
 }
 _for(i,0,q){
 if(ans[i])
 puts("YES");
 else
 puts("NO");
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:%E7%BC%93%E5%86%B2%E5%8C%BA&rev=1631415192

Last update: 2021/09/12 10:53

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:%E7%BC%93%E5%86%B2%E5%8C%BA&rev=1631415192

	[E. Contamination]
	E. Contamination
	题意
	题解

