
2026/01/14 03:31 1/5 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 0 0 0
B 0 0 0
C 1 0 2
D 2 0 0
E 0 0 0
G 0 0 0
J 2 0 1
K 0 0 0

题解

D. Gambling Monster

题意

给定一个数 x，初始值为 0。每次操作随机获得一个数 y，$y\in [0\sim n-1]$，其中 $y=i$ 的概率为
p_i。

每次操作 $x\gets \max(x,x\oplus y)$，求 x 变成 $n-1$ 的期望操作次数。保证 n 为 2 的幂次。

题解

设 $\text{dp}(i)$ 表示从 i 到 $n-1$ 的期望操作次数，则 $\text{dp}(n-1)=0$，题目答案为
$\text{dp}(0)$。不难得到以下状态转移

$$ \text{dp}(i)=1+\sum_{j\oplus i\gt i}p_j\text{dp}(j\oplus i)+\sum_{j\oplus i\le i}p_j\text{dp}(i) $$

移项，得

$$ \text{dp}(i)=\cfrac{1+\sum_{j\oplus i\gt i}p_j\text{dp}(j\oplus i)}{\sum_{j\oplus i\gt i}p_j} $$

考虑满足 $j\oplus i\ge i$ 的 j 的范围。设 $i=010100$，从高位到低位考虑合法的 j。

不难发现 $j\in [100000\sim 111111]\cup [001000\sim 001111]\cup [000010\sim 000011]\cup
[000001\sim 000001]$。

预处理 p_j 的前缀和，不难计算出 $\sum_{j\oplus i\gt i}p_j$。接下来考虑怎么计算 $\sum_{j\oplus i\gt
i}p_j\text{dp}(j\oplus i)$。

实际上，可以从后往前 dp，刷表法更新 $\sum_{j\oplus i\gt i}p_j\text{dp}(j\oplus i)$。

https://ac.nowcoder.com/acm/contest/11257

Last
update:
2021/08/05
23:33

2020-2021:teams:legal_string:组队训练
比赛记录:contest10 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest10&rev=1628177611

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

当计算完 $i=010100$ 时 $\text{dp}(010100\sim 010111)$ 正好全部算出，取 $j=[000100\sim
000111]$。

利用 FWT 计算 $\text{dp}(010100\sim 010111)$ 对 $\text{dp}(010000\sim 010011)$ 的贡
献。

贡献计算的时间复杂度 $O\left(\sum_{i=1}^{n}\text{lowbit}(i)\log
\left(\text{lowbit}(i)\right)\right)\sim O(n\log^2 n)$。

ps. 标程是 CDQ 分治套 FWT，突然感觉简单了不少。

const int MAXN=1<<17,mod=1e9+7;
int quick_pow(int n,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;
 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
void XOR(int *f,int n,int type){
 int t1,t2,t3=type==1?1:quick_pow(2,mod-2);
 for(int i=1;i<n;i<<=1)
 for(int j=0;j<n;j+=(i<<1))
 _for(k,j,j+i){
 t1=f[k],t2=f[k+i];
 f[k]=1LL*(t1+t2)*t3%mod;
 f[k+i]=1LL*(t1-t2)*t3%mod;
 }
}
#define lowbit(x) ((x)&(-x))
int a[MAXN],pre[MAXN],dp[MAXN],temp1[MAXN],temp2[MAXN];
void solve(){
 int n=read_int(),s=0,bt=0;
 while(n!=(1<<bt))bt++;
 bt--;
 _for(i,0,n){
 a[i]=read_int();
 s+=a[i];
 pre[i]=s;
 }
 s=quick_pow(s,mod-2);
 _for(i,0,n){
 a[i]=1LL*a[i]*s%mod;
 pre[i]=1LL*pre[i]*s%mod;
 }
 mem(dp,0);
 for(int i=n-2;i>=0;i--){
 dp[i]++;

2026/01/14 03:31 3/5 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 int d=0;
 for(int j=bt;j>=0;j--){
 if((i&(1<<j))==0)
 d=(d+pre[(1<<(j+1))-1]-pre[(1<<j)-1])%mod;
 }
 dp[i]=1LL*dp[i]*quick_pow(d,mod-2)%mod;
 int len=lowbit(i);
 _for(j,0,len){
 temp1[j]=dp[i+j];
 temp2[j]=a[j^len];
 }
 XOR(temp1,len,1);
 XOR(temp2,len,1);
 _for(j,0,len)
 temp1[j]=1LL*temp1[j]*temp2[j]%mod;
 XOR(temp1,len,0);
 _for(j,0,len)
 dp[(i^len)+j]=(dp[(i^len)+j]+temp1[j])%mod;
 }
 enter((dp[0]+mod)%mod);
}
int main(){
 int T=read_int();
 while(T--){
 solve();
 }
 return 0;
}

J. Defend Your Country

题意

给定 n 个点 m 条边的连通图，要求删去任意条边，最大化图的点权和。

其中第 i 个点的点权的绝对值为 a_i，如果该点所在连通块大小为偶数则权值为正，否则为负。

题解

不难发现如果 n 为偶数则不需要任何删边。

如果 n 为奇数，如果最优解中存在一个大小不为 1 的奇连通块，任取该连通块的一个点删去所有相关
连边一定不会使得答案变劣。

因此不妨考虑强制删一个点，如果这个点不是割点，显然删除该点后不需要额外删点，统计此时的答案。

如果这个点是割点，则需要考虑删去这个点得到的剩余连通分量，如果每个连通分量大小都是偶数，显然
也不需要额外删点。

Last
update:
2021/08/05
23:33

2020-2021:teams:legal_string:组队训练
比赛记录:contest10 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest10&rev=1628177611

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

否则，删去该点后得到至少两个奇连通分量，还要继续在奇连通分量中删点，事实上，这种策略一定不是
最优的，下面给出证明：

假设这是最优策略，则所有删去的点一定是原图中的割点，否则如果存在非割点一开始删去该点才是最优。

另外，每次删去割点一定得到的都是奇连通块，否则考虑 (偶连通块-第二个割点-偶连通块)-第一个割点-
奇连通块 的情况。

其中原策略是删除第一个割点后得到奇连通块 (偶连通块-第二个割点-偶连通块)，再删除第二个割点。这
样一定不如直接删去第二个割点。

于是由于每个割点删完后一定存在与他相邻的奇连通块，然后又要在奇数连通块中删割点，于是每个割点
一定有两个相邻割点。

考虑在原图建立点双树，易知点双树的叶子割点一定没有两个相邻割点，矛盾。因此假设不成立。

至于维护删除割点后的其他连通分量奇偶性可以在跑 dfs 树时顺便维护子树大小，根据子树奇偶
性判断。

特别注意即使 u 是割点，删除 u 也不能保证 u 的每个子树都构成独立连通分量。

事实上如果 $\text{low[v]}<\text{dfn}[u]$ 则说明 v 和 u 的祖先结点属于同一个点双连通分量，不
要重复判定。比赛的时候就这里假了，长了个教训。

时间复杂度 $O(n+m)$。

const int MAXN=1e6+5,MAXM=2e6+5,Inf=1e9;
struct Edge{
 int to,next;
}edge[MAXM<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
int low[MAXN],dfn[MAXN],sz[MAXN],dfs_t;
bool iscut[MAXN],fib[MAXN];
void dfs(int u,int fa){
 low[u]=dfn[u]=++dfs_t;
 int child=0;
 sz[u]=1;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)continue;
 if(!dfn[v]){
 dfs(v,u);
 sz[u]+=sz[v];
 if(sz[v]%2&&low[v]>=dfn[u])
 fib[u]=true;
 low[u]=min(low[u],low[v]);
 if(low[v]>=dfn[u]&&u!=fa)
 iscut[u]=true;
 if(u==fa)child++;

2026/01/14 03:31 5/5 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 low[u]=min(low[u],dfn[v]);
 }
 if(u==fa&&child>=2)
 iscut[u]=true;
}
int a[MAXN];
void solve(){
 int n=read_int(),m=read_int();
 LL ans=0;
 edge_cnt=0,dfs_t=0;
 _rep(i,1,n){
 a[i]=read_int();
 head[i]=0;
 dfn[i]=0;
 iscut[i]=0;
 fib[i]=0;
 ans+=a[i];
 }
 while(m--){
 int u=read_int(),v=read_int();
 Insert(u,v);
 Insert(v,u);
 }
 if(n%2==0){
 enter(ans);
 return;
 }
 dfs(1,1);
 int det=Inf;
 _rep(i,1,n){
 if(!iscut[i])
 det=min(det,a[i]);
 else if(!fib[i])
 det=min(det,a[i]);
 }
 enter(ans-det*2);
}
int main(){
 int T=read_int();
 while(T--){
 solve();
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest10&rev=1628177611

Last update: 2021/08/05 23:33

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest10&rev=1628177611

	补题情况
	题解
	D. Gambling Monster
	题意
	题解

	J. Defend Your Country
	题意
	题解

