
2026/02/05 10:11 1/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 0 0 0
B 2 2 0
C 0 0 0
D 0 0 0
E 1 0 2
G 0 0 0
J 2 2 0
K 2 0 0

题解

B. xay loves monotonicity

题意

给定一个序列 A 和序列 B，其中 $0\le b_i\le 1$ 接下来三种操作：

$a_i\gets t$1.
对 $l\le i\le r$，$b_i\gets b_i\oplus 1$2.
给定 l,r。选取最长下标序列 $l\le i_1\le i_2\le \cdots i_k\le r$，满足 $a_{i_1}\le a_{i_2}\le\cdots3.
\le a_{i_k}$，且对任意 $i_t\lt j\lt i_{t+1}$ 有 $a_j\lt a_{i_t}$。

对每个操作 3，输出 $b_{i_t}\neq b_{i_{t+1}}$ 的个数。

题解

设 $ma(L,R)=\max(a[L\sim R]),mb(L,R)$ 表示 $ma(L,R)$ 对应的 b_i，如果存在多个就取最右边的。

设 $\text{query}(L,R,p,q)$ 表示假如当前序列末尾对应 $a_i=p,b_i=q$ 时遍历区间 (L,R) 得到的答案。

于是，如果 $a_i\gt ma(L,M)$，则 $\text{query}(L,R,p,q)=\text{query}(M+1,R,p,q)$。

否则，有 $\text{query}(L,R,p,q)=\text{query}(L,M,p,q)+\text{query}(M+1,R,ma(L,M),mb(L,M))$。

建立线段树，每个区间维护 $\text{query}(M+1,R,ma(L,M),mb(L,M))$。

这样，对一个询问，如果该询问正好对应一个线段树区间，则查询复杂度 $O(\log n)$。

否则，将该询问拆分成 $O(\log n)$ 个线段树区间，串联查询计算答案，时间复杂度 $O(\log^2 n)$。

对与修改操作，修改完暴力询问更新 $\text{query}(M+1,R,ma(L,M),mb(L,M))$，由于这是线段树区间，

https://ac.nowcoder.com/acm/contest/11258

Last
update:
2021/08/13
14:54

2020-2021:teams:legal_string:组队训练
比赛记录:contest12 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest12&rev=1628837686

https://wiki.cvbbacm.com/ Printed on 2026/02/05 10:11

所以复杂度为 $O(\log n)$。

所以修改的总复杂度也是 $O\left(\log^2 n\right)$。总时间复杂度 $O\left(n\log n+q\log^2 n\right)$。

ps. 比赛写了 $O(nq)$ 的假算法，居然过了。

const int MAXN=2e5+5;
int a[MAXN],b[MAXN];
int lef[MAXN<<2],rig[MAXN<<2],s[MAXN<<2],tag[MAXN<<2];
struct Node{
 int a,b;
}mv[MAXN<<2];
Node Max(Node L,Node R){
 if(L.a>R.a)
 return L;
 else
 return R;
}
void push_tag(int k){
 mv[k].b^=1;
 tag[k]^=1;
}
void push_down(int k){
 if(tag[k]){
 push_tag(k<<1);
 push_tag(k<<1|1);
 tag[k]=0;
 }
}
int query(int k,int a,int b){
 if(lef[k]==rig[k])
 return mv[k].a>=a&&mv[k].b!=b;
 push_down(k);
 if(a<=mv[k<<1].a)
 return query(k<<1,a,b)+s[k];
 else
 return query(k<<1|1,a,b);
}
void push_up(int k){
 mv[k]=Max(mv[k<<1],mv[k<<1|1]);
 s[k]=query(k<<1|1,mv[k<<1].a,mv[k<<1].b);
}
void build(int k,int L,int R){
 lef[k]=L,rig[k]=R;
 int M=L+R>>1;
 if(L==R){
 mv[k]=Node{a[M],b[M]};
 return;
 }
 build(k<<1,L,M);

2026/02/05 10:11 3/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 build(k<<1|1,M+1,R);
 push_up(k);
}
Node query_max(int k,int L,int R){
 if(L<=lef[k]&&rig[k]<=R)
 return mv[k];
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=R)
 return query_max(k<<1,L,R);
 else if(mid<L)
 return query_max(k<<1|1,L,R);
 else
 return Max(query_max(k<<1,L,R),query_max(k<<1|1,L,R));
}
int query(int k,int L,int R,int a,int b){
 if(L<=lef[k]&&rig[k]<=R)
 return query(k,a,b);
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=R)
 return query(k<<1,L,R,a,b);
 else if(mid<L)
 return query(k<<1|1,L,R,a,b);
 else{
 Node t=query_max(k<<1,L,R);
 if(a<=t.a)
 return query(k<<1,L,R,a,b)+query(k<<1|1,L,R,t.a,t.b);
 else
 return query(k<<1|1,L,R,a,b);
 }
}
void update1(int k,int pos,int v){
 if(lef[k]==rig[k]){
 mv[k].a=v;
 return;
 }
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=pos)
 update1(k<<1,pos,v);
 else
 update1(k<<1|1,pos,v);
 push_up(k);
}
void update2(int k,int L,int R){
 if(L<=lef[k]&&rig[k]<=R){
 push_tag(k);
 return;
 }
 push_down(k);

Last
update:
2021/08/13
14:54

2020-2021:teams:legal_string:组队训练
比赛记录:contest12 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest12&rev=1628837686

https://wiki.cvbbacm.com/ Printed on 2026/02/05 10:11

 int mid=lef[k]+rig[k]>>1;
 if(mid>=L)
 update2(k<<1,L,R);
 if(mid<R)
 update2(k<<1|1,L,R);
 push_up(k);
}
int main(){
 int n=read_int();
 _rep(i,1,n)a[i]=read_int();
 _rep(i,1,n)b[i]=read_int();
 build(1,1,n);
 int q=read_int();
 while(q--){
 int opt=read_int(),t1=read_int(),t2=read_int();
 if(opt==1)
 update1(1,t1,t2);
 else if(opt==2)
 update2(1,t1,t2);
 else{
 if(t1==t2)
 enter(0);
 else{
 Node t=query_max(1,t1,t1);
 enter(query(1,t1+1,t2,t.a,t.b));
 }
 }
 }
 return 0;
}

E. xay loves nim

题意

给了 n 堆石子和 m 个可以取走的石子的数量，记为 x_{i} ，除了这 m 种石子，还可以取莫比乌
斯函数值为 1 的数量石子。同时给出这 n 堆石子的数量范围 $[l_{i},r_{i}]$ ，求所有的情况中，先手
必胜的局数，局面不同当且仅当存在一堆石子在两个局面中数量不同。

$1≤n≤10^{6},1≤l_{i},r_{i}≤10^{5},1≤m≤5,1≤x_{i}≤10^{5}$

题解

大综合题，显然需要会莫比乌斯反演（废话），还需要会博弈论的 sg 那套理论，先手必胜当且仅当所
有的 sg 值异或起来不为 0 。听出题人说 sg 值最高不会超过 230 ，但是现场的时候怎么知道嘛⋯

显然需要先筛出来 1 到 100000 的莫比乌斯函数值，才能知道哪些能加进去，然后再把 m 种数字也

2026/02/05 10:11 5/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

放进去，然后就是看每个状态的后继状态，这里也是学到了可以暴力搞。

对于每一个新的值 i ，搞一个数组，看这个值的后继状态有没有 sg 为这个值的，如果有需要继续找，
直到找不到，根据 mex 那套理论，就是此时的 sg 了。然后 i 加上刚才放进去的那些数的后继状
态可以到达 i ，于是这些状态的后继 sg 值可以有现在这个值，这里我们只关心能不能有，所以可以用
$bitset$ 优化一下，这部分的复杂度是 $O({\frac {100000^{2}} w}+256×100000)$ ，这里本来要写
230 的，但是后面需要变成 256 。

于是我们处理出了所有石子数的 sg 值，接下来对于每一堆石子，我们可以求出来，他们这个范围内，
分别有多少个 sg 值为 0 的，有多少个 sg 值为 1 的，依次类推。

然后我们需要关心有多少个 $a[1]$ ^ $a[2]$ ^ $…$ ^ $a[n]≠0$ ，这玩意显然可以看成 FWT 。我们先
统计出每个区间内有多少个 sg 值为 i 的，这显然前缀和就可以。然后我们相当于看 n 个多项式相
乘，每个多项式的幂次是各个 sg 值，系数是有多少个状态的 sg 值是这个值。如果对于每个求
FWT 再乘起来，最后再 $IFWT$ 。我们需要开到 256 ，这就照应了前面。算了一下，单个复杂度是
$O(256×log_{2}(256))=O(2048)$ ，然后 n 个就是 $2×10^{9}$ 的，这显然是自杀行为。

然后 $oi-wiki$ 上一段话刷新了我对 FWT 的认知：若我们令 $i\&j$ 中 1 的奇偶性为 i 与 j 的奇偶
性，于是 i 与 k 的奇偶性异或 j 与 k 的奇偶性等于 i ^ j 与 k 的奇偶性。然后可以得到异
或的 FWT ： $A_{i}=\sum_{C_{1}}A_{j}-\sum_{C_{2}}A_{j}$ ， C_{1} 表示 $i\&j$ 的奇偶性为偶，
C_{2} 表示 $i\&j$ 的奇偶性为奇。（其实记住就行⋯）

又因为 sg 的范围有限，所以我们可以先预处理出每个数的二进制有多少位为 1 （或者直接
$__builtin_popcount$ 也可以）。

然后对于前缀和数组，就不能直接暴力加一了，判断两者与的奇偶性，如果为偶，则加一，不然减一。然
后这样就直接把每一堆的 FWT 数组给求完了，复杂度变成 $O(256n)$ ，而不是原来的 $O(2048n)$ ，再
全乘起来求一个 $IFWT$ 就可以了，整个这部分的复杂度都是 $O(256n)$ 的，最后对于所有 sg 值不为
0 的结果都加起来就是答案了。

另外这题卡常！前缀和数组必须大的做第一维，我不倒过来会 t 掉绝大多数数据，倒过来效率就第一
了⋯

const int maxn=100000,N=1e6+10,maxm=256,MOD=1e9+7,inv2=500000004;
bool check[maxn+1];
int prime[maxn+1],mu[maxn+1];
int
tot,n,m,ls[N],rs[N],sg[maxn+1],sum[maxn+1][maxm+1],ans[maxm+1],o[maxm+1];
bitset<maxn+1> t,b[maxm];

void Moblus() {
 mu[1]=1;
 for(int i=2; i<=maxn; i++) {
 if(!check[i]) {
 mu[i]=-1;
 prime[tot++]=i;
 }
 for(int j=0; j<tot; j++) {
 if(i*prime[j]>maxn) break;
 check[i*prime[j]]=true;
 if(i%prime[j]==0) {

Last
update:
2021/08/13
14:54

2020-2021:teams:legal_string:组队训练
比赛记录:contest12 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest12&rev=1628837686

https://wiki.cvbbacm.com/ Printed on 2026/02/05 10:11

 mu[i*prime[j]]=0;
 break;
 } else {
 mu[i*prime[j]]=-mu[i];
 }
 }
 }
}

void xor_FWT(int *P,int opt,int N) {
 for(int i=2; i<=N; i<<=1)
 for(int p=i>>1,j=0; j<N; j+=i)
 for(int k=j; k<j+p; ++k) {
 int x=P[k],y=P[k+p];
 P[k]=((ll)x+y)%MOD;
 P[k+p]=((ll)x-y+MOD)%MOD;
if(opt==-1)P[k]=(ll)P[k]*inv2%MOD,P[k+p]=(ll)P[k+p]*inv2%MOD;
 }
}

void init() {
 o[0]=0;
 for(int i=1;i<maxm;i++)o[i]=o[i>>1]+(i&1);
 for(int i=1; i<=maxn; i++) {
 if(mu[i]==1)t.set(i);
 }
 for(int i=0; i<=maxn; i++) {
 sg[i]=0;
 while(b[sg[i]][i]) sg[i]++;
 b[sg[i]]|=(t<<i);
 }
}

int main() {
 Moblus();
 read(n);read(m);
 for(int i=1; i<=n; i++) read(ls[i]),read(rs[i]);
 for(int i=1,tmp; i<=m; i++) read(tmp),t.set(tmp);
 init();
 for(int i=0; i<=maxn; i++)
 for(int j=0; j<maxm; j++)
 if(!(o[sg[i]&j]&1))sum[i][j]=1;
 else sum[i][j]=MOD-1;
 for(int i=1; i<=maxn; i++) {
 for(int j=0; j<maxm; j++) {
 sum[i][j]=sum[i][j]+sum[i-1][j];
 if(sum[i][j]>=MOD) sum[i][j]-=MOD;
 }
 }
 for(int i=0; i<maxm; i++)ans[i]=1;

2026/02/05 10:11 7/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 for(int i=1; i<=n; i++)
 for(int j=0; j<maxm; j++)
 ans[j]=(ll)ans[j]*(sum[rs[i]][j]-sum[ls[i]-1][j])%MOD;
 xor_FWT(ans,-1,maxm);
 ll sum=0;
 for(int i=1; i<maxm; i++) {
 sum=sum+ans[i];
 if(sum>=MOD) sum-=MOD;
 }
 printf("%lld\n",(sum+MOD)%MOD);
 return 0;
}

J. xay loves Floyd

题意

给定一个有向图，初始时 $\text{dis}(u,u)=0,\text{dis}(u,v)=\infty(u\neq v)$。

接下来给定若干条边 (u,v,w)，使得 $\text{dis}(u,v)=w$。询问以下两个程序最终结果中满足
$\text{dis}(u,v)$ 相同的 (u,v) 对数。

for k from 1 to n
 for i from 1 to n
 for j from 1 to n
 dis[i][j] <- min(dis[i][j], dis[i][k] + dis[k][j])

for i from 1 to n
 for j from 1 to n
 for k from 1 to n
 dis[i][j] <- min(dis[i][j], dis[i][k] + dis[k][j])

题解

首先 n 次单点源最短路算法 $O(nm\log m)$ 求出 dis 的真实值。

设 $ok(u,v)$ 表示 $\text{dis}(u,v)$ 是否为正确值，考虑第二个程序得到的 $\text{dis}(i,j)$ 正确的充要
条件。

不难发现，只要 $i\to j$ 的最短路上有一点 k 满足 $ok(i,k)\And ok(k,j)$ 即可。

首先考虑找到所有满足条件的 k，设 $\text{path}(u,v)$ 表示 $u\to v$ 上最短路的点集，于是有状态转
移方程

$$ \text{path}(i,j)=\bigcup_{\text{dis}(i,k)+w(k,j)=\text{dis}(i,j)}\text{path}(i,k) $$

对固定的 i，考虑将 j 按 $\text{dis}(i,j)$ 从小到大排序后用 bitset 加速上述转移。

然后按 $1\sim n$ 顺序枚举 j，于是有 $\text{ok}(i,j)=\sum_{k=1}^n ok(i,k)\And ok(k,j)\And (k\in

Last
update:
2021/08/13
14:54

2020-2021:teams:legal_string:组队训练
比赛记录:contest12 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest12&rev=1628837686

https://wiki.cvbbacm.com/ Printed on 2026/02/05 10:11

\text{path}(i,j))$。

用两种 bitset 维护 $\text{ok}(i,\ast),\text{ok}(\ast,i)$，上述转移也可以用 bitset 加
速。总时间复杂度 $O\left(nm\log m+\frac {n^2m}w\right)$。

const int MAXN=2e3+5,MAXM=5e3+5,inf=1e9;
struct Edge{
 int to,w,next;
}edge[MAXM];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w){
 edge[++edge_cnt]=Edge{v,w,head[u]};
 head[u]=edge_cnt;
}
namespace DJ{
 bool vis[MAXN];
 void solve(int n,int s,int *dis){
 _rep(i,1,n){
 dis[i]=inf;
 vis[i]=false;
 }
 dis[s]=0;
 priority_queue<pair<int,int> > q;
 q.push(make_pair(0,s));
 while(!q.empty()){
 int u=q.top().second;q.pop();
 if(vis[u])continue;
 vis[u]=true;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(dis[v]>dis[u]+edge[i].w){
 dis[v]=dis[u]+edge[i].w;
 q.push(make_pair(-dis[v],v));
 }
 }
 }
 }
}
int dis[MAXN][MAXN],d0[MAXN][MAXN];
bitset<MAXN> ok1[MAXN],ok2[MAXN],path[MAXN];
int main(){
 int n=read_int(),m=read_int();
 _rep(i,1,n)_rep(j,1,n)d0[i][j]=inf;
 _rep(i,1,n)d0[i][i]=0;
 while(m--){
 int u=read_int(),v=read_int(),w=read_int();
 d0[u][v]=w;
 Insert(u,v,w);
 }
 _rep(i,1,n)

2026/02/05 10:11 9/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 DJ::solve(n,i,dis[i]);
 _rep(i,1,n)_rep(j,1,n){
 if(dis[i][j]==d0[i][j])
 ok1[i][j]=ok2[j][i]=true;
 }
 _rep(u,1,n){
 vector<pair<int,int> >vec;
 _rep(v,1,n){
 vec.push_back(make_pair(dis[u][v],v));
 path[v].reset();
 }
 sort(vec.begin(),vec.end());
 for(pair<int,int> p:vec){
 int v=p.second;
 path[v][v]=true;
 for(int i=head[v];i;i=edge[i].next){
 int t=edge[i].to;
 if(dis[u][v]+edge[i].w==dis[u][t])
 path[t]|=path[v];
 }
 }
 _rep(v,1,n){
 if((ok1[u]&ok2[v]&path[v]).any())
 ok1[u][v]=ok2[v][u]=true;
 }
 }
 int ans=0;
 _rep(i,1,n)
 ans+=ok1[i].count();
 enter(ans);
 return 0;
}

K. xay loves sequence

题意

给定一个长度为 n 的序列 A，接下来若干询问，每次输出 $f(l,r,k)$。

定义 $f(l,r,k)$ 表示将 A 的子串 $a[l\sim r]$ 全部变为 0 的最小操作次数。

其中每次操作为选择 $a[l\sim r]$ 的一个子串 $a[l_2\sim r_2]$，令 $a_i\equiv a_i+1\bmod k(l_2\le i\le
r_2)$ 或者 $a_i\equiv a_i-1\bmod k(l_2\le i\le r_2)$。

保证对所有 k 满足 $k\gt a_i$。

题解

Last
update:
2021/08/13
14:54

2020-2021:teams:legal_string:组队训练
比赛记录:contest12 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest12&rev=1628837686

https://wiki.cvbbacm.com/ Printed on 2026/02/05 10:11

对每次询问的 $a[l\sim r]$，令 $a_{l-1}=0,a_{r+1}=0$，设 $b_i=a_i-a_{i-1}(l\le i\le r+1)$。

于是每次操作等价于选取一对 $l\le i,j\le r+1$，$b_i\equiv b_i+1\bmod k,b_j\equiv b_j+1\bmod k$。

同时，$\sum_{i=l}^{r+1} b_i=a_{r+1}-a_{l-1}=0$，最终目标是将 b_i 全部变为 0。在不考虑取模
的情况下，最小费用显然为 $\cfrac {\sum_{i=l}^{r+1}|b_i|}2$。

考虑取模，则最终有 $b_i=0,\pm k$，且仍然有 $\sum_{i=l}^{r+1} b_i=0$。

考虑将一些 $b_i\gt 0$ 的数目标设为 k，则对操作数的影响为 $\cfrac {k-2b_i}{2}$。将一些 $b_i\le 0$
的数目标设为 $-k$，则对操作数的影响为 $\cfrac {k+2b_i}{2}$。

由于要保证 $\sum_{i=l}^{r+1} b_i=0$，所以可以设最终有 x 个 $b_i=k$，同时有 x 个 $b_i=-k$。

分别在 $b_i\gt 0$ 和 $b_i\le 0$ 的两个组数中取原来绝对值前 x 大的 b_i 显然是最优的。另外随 x
增大收益显然具有单峰性。

于是二分答案即可。另外对于区间询问可以用主席树维护 $b[l+1\sim r]$ 的值，然后补充 $a_l,-a_r$。

时间复杂度 $O(n\log n\log v)$，空间复杂度 $O(n\log v)$。

const int MAXN=2e5+5,MAXV=(1<<30)+5;
struct Node{
 int lch,rch,cnt;
 LL sum;
};
Node node[MAXN*100];
int node_cnt,root1[MAXN],root2[MAXN];
int a[MAXN],b[MAXN];
LL c[MAXN];
int nodecopy(int k){
 node[++node_cnt]=node[k];
 return node_cnt;
}
#define rch(k) node[node[k].rch]
void update(int &k,int p,int pos,LL lef=0,LL rig=MAXV){
 k=nodecopy(p);
 node[k].cnt++;
 node[k].sum+=pos;
 if(lef==rig)
 return;
 LL mid=lef+rig>>1;
 if(mid>=pos)
 update(node[k].lch,node[p].lch,pos,lef,mid);
 else
 update(node[k].rch,node[p].rch,pos,mid+1,rig);
}
int query_val(int k1,int k2,int rk,LL lef=0,LL rig=MAXV){
 LL mid=lef+rig>>1;
 if(lef==rig)
 return mid;

2026/02/05 10:11 11/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 int cnt=rch(k2).cnt-rch(k1).cnt;
 if(rk>cnt)
 return query_val(node[k1].lch,node[k2].lch,rk-cnt,lef,mid);
 else
 return query_val(node[k1].rch,node[k2].rch,rk,mid+1,rig);
}
LL query_sum(int k1,int k2,int rk,LL lef=0,LL rig=MAXV){
 LL mid=lef+rig>>1;
 if(lef==rig)
 return 1LL*rk*mid;
 int cnt=rch(k2).cnt-rch(k1).cnt;
 if(rk>cnt)
 return rch(k2).sum-rch(k1).sum+query_sum(node[k1].lch,node[k2].lch,rk-
cnt,lef,mid);
 else
 return query_sum(node[k1].rch,node[k2].rch,rk,mid+1,rig);
}
int main(){
 int n=read_int(),q=read_int();
 _rep(i,1,n)a[i]=read_int();
 _rep(i,1,n){
 b[i]=a[i]-a[i-1];
 c[i]=c[i-1]+abs(b[i]);
 root1[i]=root1[i-1];
 root2[i]=root2[i-1];
 if(b[i]>=0)
 update(root1[i],root1[i],b[i]);
 else
 update(root2[i],root2[i],-b[i]);
 }
 while(q--){
 int l=read_int(),r=read_int(),k=read_int();
 int rt1=root1[r],p1=root1[l],rt2=root2[r],p2=root2[l];
 if(a[l]>=0)
 update(rt1,rt1,a[l]);
 else
 update(rt2,rt2,-a[l]);
 if(-a[r]>=0)
 update(rt1,rt1,-a[r]);
 else
 update(rt2,rt2,a[r]);
 int lef=1,rig=min(node[rt1].cnt-node[p1].cnt,node[rt2].cnt-
node[p2].cnt),rk=0;
 LL ans=c[r]-c[l]+a[l]+a[r];
 while(lef<=rig){
 int mid=lef+rig>>1;
 if(query_val(p1,rt1,mid)+query_val(p2,rt2,mid)>k){
 rk=mid;
 lef=mid+1;
 }
 else

Last
update:
2021/08/13
14:54

2020-2021:teams:legal_string:组队训练
比赛记录:contest12 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest12&rev=1628837686

https://wiki.cvbbacm.com/ Printed on 2026/02/05 10:11

 rig=mid-1;
 }
 if(rk!=0)
 ans-=(query_sum(p1,rt1,rk)+query_sum(p2,rt2,rk)-1LL*k*rk)*2;
 enter(ans/2);
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest12&rev=1628837686

Last update: 2021/08/13 14:54

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest12&rev=1628837686

	补题情况
	题解
	B. xay loves monotonicity
	题意
	题解

	E. xay loves nim
	题意
	题解

	J. xay loves Floyd
	题意
	题解

	K. xay loves sequence
	题意
	题解

