
2026/01/21 10:54 1/15 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 2 0 0
B 2 1 0
C 2 1 0
D 0 0 0
F 0 0 0
G 2 0 0
I 1 0 2
J 2 0 2

题解

A. A Math Challenge

题意

$$ \sum_{i=0}^n\sum_{1\le cj\le ai+b}i^pj^q $$

题解

设 $F(n)=\sum_{i=1}^n i^q$，于是上式转化为

$$ \sum_{i=0}^ni^pF(\lfloor \frac {ai+b}c\rfloor) $$

由于 $F(n)$ 是 $q+1$ 次多项式，所以高斯消元可以暴力求出 $F(n)$ 的表达式。于是问题转化为计算
$\sum_{i=0}^ni^p(\lfloor \frac {ai+b}c\rfloor)^k(0\le k\le q)$。

上式用万能欧几里得算法板子可以 $O\left(p^2q^2\log c\right)$，题目正解是类欧几里得算法
$O\left((p+q)^3\log c\right)$，不过卡卡常还是能过的。

const int mod=998244353,MAXK=53;
int C[MAXK][MAXK];
struct Node{
 int cntr,cntu,f[MAXK][MAXK];
 Node(int cntr=0,int cntu=0){
 this->cntr=cntr;
 this->cntu=cntu;
 mem(f,0);
 }
 Node operator * (const Node &b)const{
 static int px[MAXK],py[MAXK];

https://ac.nowcoder.com/acm/contest/11260

Last
update:
2021/08/23
22:30

2020-2021:teams:legal_string:组队训练
比赛记录:contest15 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

https://wiki.cvbbacm.com/ Printed on 2026/01/21 10:54

 static int b1[MAXK][MAXK],b2[MAXK][MAXK];
 Node c;
 int dx=cntr,dy=cntu;
 px[0]=py[0]=1;
 _for(i,1,MAXK)
 px[i]=1LL*px[i-1]*dx%mod;
 _for(i,1,MAXK)
 py[i]=1LL*py[i-1]*dy%mod;
 _for(i,0,MAXK)_rep(j,0,i){
 b1[i][j]=1LL*C[i][j]*px[i-j]%mod;
 b2[i][j]=1LL*C[i][j]*py[i-j]%mod;
 }
 c.cntr=(cntr+b.cntr)%mod;
 c.cntu=(cntu+b.cntu)%mod;
 _for(i,0,MAXK)_for(j,0,MAXK){
 c.f[i][j]=f[i][j];
 _rep(i2,0,i)_rep(j2,0,j)
c.f[i][j]=(c.f[i][j]+1LL*b.f[i2][j2]*b1[i][i2]%mod*b2[j][j2])%mod;
 }
 return c;
 }
};
Node quick_pow(Node n,int k){
 Node ans=Node(0,0);
 while(k){
 if(k&1)ans=ans*n;
 k>>=1;
 if(k)n=n*n;
 }
 return ans;
}
Node asgcd(int a,int b,int c,int n,Node su,Node sr){
 if(a>=c)
 return asgcd(a%c,b,c,n,su,quick_pow(su,a/c)*sr);
 int m=(1LL*a*n+b)/c;
 if(!m)
 return quick_pow(sr,n);
 else
 return quick_pow(sr,(c-b-1)/a)*su*asgcd(c,(c-
b-1)%a,a,m-1,sr,su)*quick_pow(sr,n-(1LL*c*m-b-1)/a);
}
Node cal(int a,int b,int c,int n){
 Node su=Node(0,1),sr=Node(1,0);
 _for(i,0,MAXK)
 sr.f[i][0]=1;
 return quick_pow(su,b/c)*asgcd(a,b%c,c,n,su,sr);
}
int a[MAXK][MAXK],pw[MAXK][MAXK],A[MAXK];
void Init(){
 C[0][0]=1;

2026/01/21 10:54 3/15 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 _for(i,1,MAXK){
 C[i][0]=1;
 _rep(j,1,i)
 C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
 }
 _for(i,0,MAXK){
 pw[i][0]=1;
 _for(j,1,MAXK)
 pw[i][j]=1LL*pw[i][j-1]*i%mod;
 }
}
int quick_pow(int n,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;
 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
void build(int n){
 _for(i,0,n){
 _for(j,0,n)
 a[i][j]=pw[i][j];
 _rep(j,1,i)
 a[i][n]=(a[i][n]+pw[j][n-2])%mod;
 }
 _for(i,0,n){
 int pos=-1;
 _for(j,i,n){
 if(a[j][i]){
 pos=j;
 break;
 }
 }
 if(pos!=i)
 swap(a[i],a[pos]);
 int div=quick_pow(a[i][i],mod-2);
 _rep(j,i,n)
 a[i][j]=1LL*a[i][j]*div%mod;
 _rep(j,0,n){
 if(j==i)continue;
 for(int k=n;k>=i;k--)
 a[j][k]=(a[j][k]+mod-1LL*a[j][i]*a[i][k]%mod)%mod;
 }
 }
 _for(i,0,n)
 A[i]=a[i][n];
}
int main()
{

Last
update:
2021/08/23
22:30

2020-2021:teams:legal_string:组队训练
比赛记录:contest15 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

https://wiki.cvbbacm.com/ Printed on 2026/01/21 10:54

 Init();
 int
a=read_int(),b=read_int(),c=read_int(),p=read_int(),q=read_int(),n=read_int
();
 Node ans=cal(a,b,c,n);
 int base=1;
 _for(i,0,MAXK){
 ans.f[0][i]=(ans.f[0][i]+base)%mod;
 base=1LL*base*(b/c)%mod;
 }
 build(q+2);
 int s=0;
 _rep(i,0,q+1)
 s=(s+1LL*ans.f[p][i]*A[i])%mod;
 enter(s);
 return 0;
}

B. Best Subgraph

题意

定义 $k-\text{degree}$ 子图为每个点在子图中度数至少为 k 的连通极大子图。

定义每个 G 的子图 S 的分数为 $M\times m(S)-N\times n(S)+B\times b(S)$。

其中 $m(S)$ 表示 S 的边数，$n(S)$ 表示 S 的点数，$b(S)$ 表示 $|\{(u,v)|(u,v)\in G,u\in S,v\not\in
S\}|$。

求分数最大的 $k-\text{degree}$ 子图，并求出分数最大的 $k-\text{degree}$ 子图中 k 的最大值。

输入保证图连通。

题解

首先，定义 $V(k)$ 表示所有 $k-\text{degree}$ 子图的并集，易知 $V(k+1)\subseteq V(k)$。

构建分层图，其中第 k 层的点集为 $V(k)-V(k+1)$，同时对每个点 $u\in V(k)-V(k+1)$，$w(u)=k$。

然后考虑按层加点，动态维护当前每个 $k-\text{degree}$ 子图的答案。对于每个新加入的点 u，首先
他本身产生贡献 $-N$。

对于 u 的所有连边 (u,v)，如果 $w(v)\gt w(u)$，则 (u,v) 会被加入 $m(S)$，同时从 $b(S)$ 删除，产
生贡献 $M-B$。

如果 $w(v)=w(u)$，则 (u,v) 也会被加入 $m(S)$，但为了贡献被计算两次，于是每个点的贡献为 $\frac
M2$。

2026/01/21 10:54 5/15 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

如果 $w(v)\lt w(u)$，则 (u,v) 会被加入 $b(S)$，产生贡献 B。

于是上述过程可以将所有贡献都转化为每个点的点权。考虑加入点时并查集维护每个连通块的点权和。

每层点全部加完后查询每个连通块的点权和的最大值即为所有 $k-\text{degree}$ 子图的最大答案。

至于如果计算每个点的 $w(u)$。首先输入保证图连通，所有图 G 本身就是 $1-\text{degree}$ 子图。

考虑先删去所有度数为 1 的点，删点后可能会导致原来度数不为 1 的点度数不大于 1，继续删除，直
到无点可删，得到 $2-\text{degree}$ 子图。

将删去的点的 $w(u)$ 全部设为 1，然后再求 $3-\text{degree}$ 子图不断重复上述过程，即可得到所有
$w(u)$。

时间复杂度 $O\left(\text{Na}(n+m)\right)$。

const int MAXN=1e6+5;
const LL inf=1e18;
struct Edge{
 int to,next;
}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
bool vis[MAXN];
vector<int> q[MAXN],vec[MAXN];
int deg[MAXN],w[MAXN],p[MAXN];
LL sum[MAXN];
int Find(int x){
 return x==p[x]?x:p[x]=Find(p[x]);
}
int main()
{
 int n=read_int(),m=read_int(),M=read_int(),N=read_int(),B=read_int();
 while(m--){
 int u=read_int(),v=read_int();
 Insert(u,v);
 Insert(v,u);
 deg[u]++;
 deg[v]++;
 }
 _rep(i,1,n)
 q[deg[i]].push_back(i);
 _for(k,1,MAXN){
 _for(j,0,q[k].size()){
 int u=q[k][j];
 if(vis[u])continue;
 vis[u]=true;
 w[u]=k;

Last
update:
2021/08/23
22:30

2020-2021:teams:legal_string:组队训练
比赛记录:contest15 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

https://wiki.cvbbacm.com/ Printed on 2026/01/21 10:54

 vec[k].push_back(u);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 deg[v]--;
 q[deg[v]].push_back(v);
 }
 }
 }
 _rep(u,1,n){
 p[u]=u;
 sum[u]=-N;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(w[u]<w[v]){
 sum[u]+=M;
 sum[u]-=B;
 }
 else if(w[u]==w[v]&&u<v)
 sum[u]+=M;
 else if(w[u]>w[v])
 sum[u]+=B;
 }
 }
 int st=MAXN-1;
 while(vec[st].empty())st--;
 pair<LL,int> ans=make_pair(-inf,0);
 for(int k=st;k;k--){
 for(int u:vec[k]){
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(w[v]<k)continue;
 int x=Find(u),y=Find(v);
 if(x!=y){
 p[x]=y;
 sum[y]+=sum[x];
 }
 }
 }
 for(int u:vec[k])
 ans=max(ans,make_pair(sum[Find(u)],k));
 }
 space(ans.second);enter(ans.first);
 return 0;
}

C. Cells

2026/01/21 10:54 7/15 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

题意

给定一个二维平面，求满足如下条件的 n 元路径组个数：

第 i 条路径 $(a_i,0)\to (0,i)$1.
每次移动只能选择 $(x,y)\to (x-1,y),(x,y+1)$2.

数据保证 $a_{i-1}\lt a_i$。

题解

显然有

$$ M= \begin{bmatrix} {a_1+1\choose 1}&{a_1+2\choose 2}&\cdots&{a_1+n\choose n}\\
{a_2+1\choose 1}&{a_2+2\choose 2}&\cdots&{a_2+n\choose n}\\ \vdots&\vdots&\ddots&\vdots\\
{a_n+1\choose 1}&{a_n+2\choose 2}&\cdots&{a_n+n\choose n}\\ \end{bmatrix} = \prod_{i=1}^n
\frac 1{i!} \begin{bmatrix} \frac {(a_1+1)!}{a_1!}&\frac {(a_1+2)!}{a_1!}&\cdots&\frac
{(a_1+n)!}{a_1!}\\ \frac {(a_2+1)!}{a_2!}&\frac {(a_2+2)!}{a_2!}&\cdots&\frac {(a_2+n)!}{a_2!}\\
\vdots&\vdots&\ddots&\vdots\\ \frac {(a_n+1)!}{a_n!}&\frac {(a_n+2)!}{a_n!}&\cdots&\frac
{(a_n+n)!}{a_n!}\\ \end{bmatrix} $$

设 $x_i=a_i+1$，则

$$ M= \prod_{i=1}^n \frac 1{i!} \begin{bmatrix}
x_1&x_1(x_1+1)&\cdots&\prod_{i=0}^{n-1}(x_1+i)\\
x_2&x_2(x_2+1)&\cdots&\prod_{i=0}^{n-1}(x_2+i)\\ \vdots&\vdots&\ddots&\vdots\\
x_n&x_n(x_n+1)&\cdots&\prod_{i=0}^{n-1}(x_n+i)\\ \end{bmatrix} $$

从左到右用列消元，可以得到

$$ M= \prod_{i=1}^n \frac 1{i!} \begin{bmatrix} x_1&x_1^2&\cdots&x_1^n\\
x_2&x_2^2&\cdots&x_2^n\\ \vdots&\vdots&\ddots&\vdots\\ x_n&x_n^2&\cdots&x_n^n\\
\end{bmatrix} $$

每行都提出一个 x_i，就可以得到一个范德蒙行列式，于是有

$$ \det M=\prod_{i=1}^n \frac {a_i+1}{i!}\prod_{1\le i\lt j\le n}(a_j-a_i) $$

考虑 NTT 计算每个值在 $\prod_{1\le i\lt j\le n}(a_j-a_i)$ 出现的次数。

具体的，可以设 $f(x)=\sum_{i=1}^n x^{a_i},g(x)=\sum_{i=1}^n x^{-a_i}$，则每个值 k 出现次数
就是 $[x^k]f(x)g(x)$。

注意还有 $i\lt j$ 的限制，根据对称性，只考虑 $k\gt 0$ 的部分贡献然后做快速幂即可，时间复杂度
$O(V\log V)$。

const int mod=998244353,MAXN=1e6+5;
int quick_pow(int n,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;

Last
update:
2021/08/23
22:30

2020-2021:teams:legal_string:组队训练
比赛记录:contest15 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

https://wiki.cvbbacm.com/ Printed on 2026/01/21 10:54

 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
namespace Poly{
 const int Mod=998244353,G=3;
 int rev[MAXN<<2],Wn[30][2];
 void init(){
 int m=Mod-1,lg2=0;
 while(m%2==0)m>>=1,lg2++;
 Wn[lg2][1]=quick_pow(G,m);
 Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
 while(lg2){
 m<<=1,lg2--;
 Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
 Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
 }
 }
 int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
 }
 void NTT(int *f,int n,bool type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 int t1,t2;
 for(int i=1,lg2=0;i<n;i<<=1,lg2++){
 int w=Wn[lg2+1][type];
 for(int j=0;j<n;j+=(i<<1)){
 int cur=1;
 _for(k,j,j+i){
 t1=f[k],t2=1LL*cur*f[k+i]%Mod;
 f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
 cur=1LL*cur*w%Mod;
 }
 }
 }
 if(!type){
 int div=quick_pow(n,Mod-2);
 _for(i,0,n)f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
 }
 }
 void mul(int *f,int _n,int *g,int _m){
 int n=build(_n+_m-2);
 _for(i,_n,n)f[i]=0;_for(i,_m,n)g[i]=0;
 NTT(f,n,1);NTT(g,n,1);

2026/01/21 10:54 9/15 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 _for(i,0,n)f[i]=1LL*f[i]*g[i]%Mod;
 NTT(f,n,0);
 }
}
int frac[MAXN],invf[MAXN],a[MAXN<<2],b[MAXN<<2];
int main(){
 frac[0]=1;
 _for(i,1,MAXN)
 frac[i]=1LL*frac[i-1]*i%mod;
 invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
 for(int i=MAXN-1;i;i--)
 invf[i-1]=1LL*invf[i]*i%mod;
 int n=read_int(),base=1e6,ans=1;
 _rep(i,1,n){
 int t=read_int();
 ans=1LL*ans*(t+1)%mod*invf[i]%mod;
 a[t]++;
 b[base-t]++;
 }
 Poly::init();
 Poly::mul(a,base+1,b,base+1);
 _rep(i,base+1,base*2)
 ans=1LL*ans*quick_pow(i-base,a[i])%mod;
 enter((ans+mod)%mod);
 return 0;
}

I. Incentive Model

题意

有两个人争夺 n 个物品，每一轮争夺一个物品，每次争夺都有成功概率。给定 x,y 代表初始双方的
$stake$ 分别为 ${\frac x y}$ 和 $1-{\frac x y}$ ，每次争夺双方成功概率为自己的 $stake$ 比双方相加
的 $stake$ ，然后每一轮获胜者的 $stake$ 要加上 w ，问第一个人争夺成功轮数的期望，结果对
998244353 取模。

题解

我们设对于第一个人，第 i 轮获胜的概率为 X_{i} ，第 i 轮的 $stake$ 期望为 S_{i} 。

我们有 $S_{0}={\frac x y}$

然后我们有 $X_{i+1}={\frac {S_{i}} {1+w×i}}$ ， $S_{i+1}=S{i}+w×X_{i+1}$

所以有 $S_{i+1}=S_{i}+w×({\frac {S_{i}} {1+w×i}})=S_{i}×(1+{\frac w
{1+w×i}})=S_{i}×{\frac {1+(i+1)×w} {1+i×w}}$

所以有 ${\frac {S_{i+1}} {1+(i+1)×w}}={\frac {S_{i}} {1+i×w}}=…={\frac {S_{0}}

Last
update:
2021/08/23
22:30

2020-2021:teams:legal_string:组队训练
比赛记录:contest15 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

https://wiki.cvbbacm.com/ Printed on 2026/01/21 10:54

{1+0×i}}={\frac x y}$

所以有 $S_{n}={\frac x y}×(1+n×w)$

又因为获胜轮数可以表示为 ${\frac {S_{n}-{\frac x y}} {w}}$

所以化简得到答案为 ${\frac x y}×n$

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int mod=998244353;
int qpow(int a,int b,int m=mod) {
 int r=1;
 while(b) {
 if (b&1) r=r*a%m;
 a=a*a%m,b>>=1;
 }
 return r;
}
int n,x,y,w;
#undef int

int main() {
 scanf("%lld %lld %lld %lld",&n,&w,&x,&y);
 printf("%lld\n",n*x%mod*qpow(y,mod-2)%mod);
 return 0;
}

J. Jam

题目链接

题意

现在有 N,W,S,E 四个方向，每个方向可以左拐右拐直走，然后会有一些互相撞车的情况，单位时间每个
路线可以通过一辆车，我们要保证不能相撞，然后给出这十二个路来的车的量数，问最少多少时间能让所
有的车都走完。

题解

由图显然右拐不用考虑，我们求出其他最长时间再分别和这四个数取 max 就可以了，所以只需要求出
满足剩下八个的最小的时间就好了。

然后有很多不是最优的情况不用考虑，比如从 N 直走 和 从 N 直走+从 S 直走，前者的情况在任何
情况下都不如后者显然不用考虑，于是我们就挑选最优的方案，可以找出十二种，最后的最优策略一定是
这十二种的线性组合，我们分别设出他们的执行次数，然后就变成了八个不等式，每个不等式都是大于等

https://ac.nowcoder.com/acm/contest/11260/J

2026/01/21 10:54 11/15 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

于的关系，然后有十二个未知数。跑一个单纯型就结束了，然后对应的哪个未知数，自己画个图就好了。

#include <bits/stdc++.h>
using namespace std;

const double eps = 1e-8;
const int maxn=13,maxm=13;

int n, e, l, r;
int id[maxn+maxm],tmp[maxn];
double m[maxm][maxn],b[maxm],*c=m[0],ans[maxn+maxm];

void pivot(int r, int c) {
 int i, j;
 double coe = 1.0 / m[r][c];
 swap(id[n + r], id[c]);
 m[r][c] = 1.0;
 for(int j = 1; j <= n; ++j)
 m[r][j] *= coe;
 b[r] *= coe;
 for(int i = 0; i <= e; ++i) {
 if(i == r) continue;
 coe = m[i][c];
 m[i][c] = 0.0;
 for(j = 1; j <= n; ++j) m[i][j] -= coe * m[r][j];
 b[i] -= coe * b[r];
 }
}

bool simplex() {
 int bas, fr;
 double G;
 while(true) {
 bas = fr = 0;
 G = INFINITY;
 for(int i = 1; i <= n; ++i)
 if(c[i] > c[fr]) fr = i;
 if(!fr) return true;
 for(int j = 1; j <= e; ++j)
 if(m[j][fr] > eps && b[j] < G * m[j][fr]) {
 G = b[j] / m[j][fr];
 bas = j;
 }
 if(!bas) return false;
 pivot(bas, fr);
 }
}

int main() {
// scanf("%d%d", &n, &e);

Last
update:
2021/08/23
22:30

2020-2021:teams:legal_string:组队训练
比赛记录:contest15 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

https://wiki.cvbbacm.com/ Printed on 2026/01/21 10:54

// for(int i = 1; i <= n; i++) scanf("%lf", c + i);
// for(int i = 1; i <= e; ++i) {
// scanf("%d%d%lf", &l, &r, b + i);//从l到r 费用都是bi 然后让1~n的所有值
都大于等于ci 且让费用最小
// for(int j = l; j <= r; ++j)
// m[i][j] = 1.0;
// }
// if(simplex()) {
// printf("%.0f\n",-b[0]);
// }
 int T;
 scanf("%d",&T);
 while(T--) {
 memset(id,0,sizeof(id));
 memset(b,0,sizeof(b));
 memset(c,0,sizeof(c));
 memset(ans,0,sizeof(ans));
 memset(m,0,sizeof(m));
 int cnt=0,cnt1=0;
 for(int i=1;i<=4;i++) {
 for(int j=1,ba;j<=4;j++) {
 if(i==j||(((j%4)+1)%4==(i%4))) {
 if(i==j) scanf("%d",&ba);
 else scanf("%d",&tmp[++cnt1]);
 continue;
 }
 scanf("%lf",&c[++cnt]);
 //printf("%d %d\n",i,j);
 }
 }
 n=8,e=12;
 for(int i=1;i<=12;i++) b[i]=1;
 m[1][4]=m[1][8]=1.0;
 m[2][8]=m[2][1]=1.0;
 m[3][7]=m[3][5]=1.0;
 m[4][7]=m[4][3]=1.0;
 m[5][4]=m[5][6]=1.0;
 m[6][6]=m[6][1]=1.0;
 m[7][2]=m[7][5]=1.0;
 m[8][2]=m[8][3]=1.0;
 m[9][7]=m[9][8]=1.0;
 m[10][5]=m[10][6]=1.0;
 m[11][3]=m[11][4]=1.0;
 m[12][1]=m[12][2]=1.0;
 simplex();
 //printf("%.0f\n",-(b[0]-1e-8));
 int ans=(ceil)(-b[0]);
 for(int i=1;i<=cnt1;i++) {
 ans=max(ans,tmp[i]);
 }

2026/01/21 10:54 13/15 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 printf("%d\n",ans);
 }
 return 0;
}

当然这东西可能被卡？看了一眼题解，我们可以发现每一种方案都只对应两个情况，所以我们可以将他们
代表的点连线然后我们发现这是一个多了两条边的二分图，枚举一下两条边选了多少次，剩下的跑网络流
就好了。这个复杂度是 $O(n^{2}C),$ 其中 C 是网络流复杂度。

const int MAXN=12,MAXM=20,Inf=0x7fffffff;
struct Edge{
 int to,cap,next;
 Edge(int to=0,int cap=0,int next=0){
 this->to=to;
 this->cap=cap;
 this->next=next;
 }
}edge[MAXM<<1];
int head[MAXN],edge_cnt;
void Clear(){mem(head,-1);edge_cnt=0;}
void Insert(int u,int v,int c){
 edge[edge_cnt]=Edge(v,c,head[u]);
 head[u]=edge_cnt++;
 edge[edge_cnt]=Edge(u,0,head[v]);
 head[v]=edge_cnt++;
}
struct Dinic{
 int s,t;
 int pos[MAXN],vis[MAXN],dis[MAXN];
 bool bfs(int k){
 queue<int>q;
 q.push(s);
 vis[s]=k,dis[s]=0,pos[s]=head[s];
 while(!q.empty()){
 int u=q.front();q.pop();
 for(int i=head[u];~i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]!=k&&edge[i].cap){
 vis[v]=k,dis[v]=dis[u]+1,pos[v]=head[v];
 q.push(v);
 if(v==t)
 return true;
 }
 }
 }
 return false;
 }
 int dfs(int u,int max_flow){
 if(u==t||!max_flow)
 return max_flow;

Last
update:
2021/08/23
22:30

2020-2021:teams:legal_string:组队训练
比赛记录:contest15 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

https://wiki.cvbbacm.com/ Printed on 2026/01/21 10:54

 int flow=0,temp_flow;
 for(int &i=pos[u];~i;i=edge[i].next){
 int v=edge[i].to;
if(dis[u]+1==dis[v]&&(temp_flow=dfs(v,min(max_flow,edge[i].cap)))){
 edge[i].cap-=temp_flow;
 edge[i^1].cap+=temp_flow;
 flow+=temp_flow;
 max_flow-=temp_flow;
 if(!max_flow)
 break;
 }
 }
 return flow;
 }
 int Maxflow(int s,int t){
 this->s=s;this->t=t;
 int ans=0,k=0;
 mem(vis,0);
 while(bfs(++k))
 ans+=dfs(s,Inf);
 return ans;
 }
}solver;
int c[4][4],idx[4][4];
int cal(){
 int ans=0,s=9,t=10;
 _for(i,0,4)
 ans+=c[i][(i+1)%4]+c[i][(i+2)%4];
 Clear();
 Insert(s,idx[0][1],c[0][1]);
 Insert(s,idx[1][3],c[1][3]);
 Insert(s,idx[2][0],c[2][0]);
 Insert(s,idx[3][0],c[3][0]);

 Insert(idx[0][1],idx[0][2],Inf);
 Insert(idx[0][1],idx[2][3],Inf);
 Insert(idx[0][1],idx[3][1],Inf);
 Insert(idx[1][3],idx[1][2],Inf);
 Insert(idx[1][3],idx[2][3],Inf);
 Insert(idx[1][3],idx[3][1],Inf);
 Insert(idx[2][0],idx[0][2],Inf);
 Insert(idx[2][0],idx[2][3],Inf);
 Insert(idx[3][0],idx[1][2],Inf);
 Insert(idx[3][0],idx[3][1],Inf);

 Insert(idx[0][2],t,c[0][2]);
 Insert(idx[1][2],t,c[1][2]);
 Insert(idx[2][3],t,c[2][3]);
 Insert(idx[3][1],t,c[3][1]);
 return ans-solver.Maxflow(s,t);

2026/01/21 10:54 15/15 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

}
void solve(){
 int ans=Inf;
 _for(i,0,4){
 _for(j,0,4)
 c[i][j]=read_int();
 }
 _rep(i,0,min(c[0][2],c[1][2])){
 c[0][2]-=i;
 c[1][2]-=i;
 _rep(j,0,min(c[2][0],c[3][0])){
 c[2][0]-=j;
 c[3][0]-=j;
 ans=min(ans,cal()+i+j);
 c[2][0]+=j;
 c[3][0]+=j;
 }
 c[0][2]+=i;
 c[1][2]+=i;
 }
 _for(i,0,4)
 ans=max(ans,c[i][(i+3)%4]);
 enter(ans);
}
int main(){
 int cnt=0;
 _for(i,0,4){
 idx[i][(i+1)%4]=++cnt;
 idx[i][(i+2)%4]=++cnt;
 }
 int T=read_int();
 while(T--)
 solve();
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

Last update: 2021/08/23 22:30

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest15&rev=1629729022

	补题情况
	题解
	A. A Math Challenge
	题意
	题解

	B. Best Subgraph
	题意
	题解

	C. Cells
	题意
	题解

	I. Incentive Model
	题意
	题解

	J. Jam
	题意
	题解

