
2026/02/02 21:15 1/16 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 0 0 0
B 0 0 0
C 0 0 0
D 0 0 0
E 0 0 0
G 0 0 0
I 0 0 0
J 2 0 0
K 0 0 0

题解

J. Illuminations

题意

题解

这题可以分成两个部分，一个是求凸包切线部分，一个是求环区间最小覆盖部分。

关于求环区间最小覆盖部分，首先肯定是断环成链，然后枚举 $i=1\sim n$ 区间 $[i,i+n)$ 的最小线段覆
盖，但这是 $O\left(n^2\right)$ 的，有以下几种解法。

第一种，本人最初过题思路，设 $\text{dp}(l,r)$ 表示区间 $[l,r]$ 的最小线段覆盖。

固定 l，显然 $\text{dp}(l,r)$ 是分段的。然后对给定 l，显然策略为找到覆盖他的线段中的最大的右端
点 k。

于是有

$$ \text{dp}(l,i) \begin{cases} 1, &i\le k\\ \text{dp}(k+1,i)+1, &i\gt k \end{cases} $$

于是可以可持久化线段树维护每个 $\text{dp}(i,\ast)$ 数组的所有分段点，然后 $O(n\log n)$ 查询
$\text{dp}(i,i+n-1)(i=1\sim n)$，得到答案。

const double eps=1e-11;
const double inf=1e20;
const double pi=acos(-1);
const int maxp=300020;
int n,m;
struct xd {

https://ac.nowcoder.com/acm/contest/11261

Last
update:
2021/08/17
10:39

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

https://wiki.cvbbacm.com/ Printed on 2026/02/02 21:15

 int id,l,r;
} xx[maxp];
int xxs,maxv;
int sgn(double x) {
 if(fabs(x)<eps) return 0;
 if(x<0) return -1;
 return 1;
}

struct Point {
 double x,y;
 Point() {}
 Point(double _x,double _y) {
 x = _x;
 y = _y;
 }
 void input() {
 scanf("%lf%lf",&x,&y);
 }
 void output() {
 printf("%.2f %.2f\n",x,y);
 }
 bool operator == (Point b)const {
 return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
 }
 bool operator < (Point b)const {
 return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
 }
 Point operator -(const Point &b)const {
 return Point(x-b.x,y-b.y);
 }
 //叉积
 double operator ^(const Point &b)const {
 return x*b.y-y*b.x;
 }
 //点积
 double operator *(const Point &b)const {
 return x*b.x + y*b.y;
 }
 //返回长度
 double len() {
 return hypot(x,y);//库函数
 }
 //返回长度的平方
 double len2() {
 return x*x + y*y;
 }
 //返回两点的距离
 double distance(Point p) {
 return hypot(x-p.x,y-p.y);

2026/02/02 21:15 3/16 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 Point operator +(const Point &b)const {
 return Point(x+b.x,y+b.y);
 }
 Point operator *(const double &k)const {
 return Point(x*k,y*k);
 }
 Point operator /(const double &k)const {
 return Point(x/k,y/k);
 }
 //计算 pa 和 pb 的夹角
 //就是求这个点看 a,b 所成的夹角
 //测试 LightOJ1203
 double rad(Point a,Point b) {
 Point p = *this;
 return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));
 }
 //计算 pa 和 pb 的有向角
 double tmprad(Point a,Point b) {
 Point p = *this;
 return atan2(((a-p)^(b-p)),(a-p)*(b-p));
 }
 //化为长度为 r 的向量
 Point trunc(double r) {
 double l = len();
 if(!sgn(l))return *this;
 r /= l;
 return Point(x*r,y*r);
 }
 //逆时针旋转 90 度
 Point rotleft() {
 return Point(-y,x);
 }
 //顺时针旋转 90 度
 Point rotright() {
 return Point(y,-x);
 }
 //绕着 p 点逆时针旋转 angle
 Point rotate(Point p,double angle) {
 Point v = (*this)-p;
 double c = cos(angle), s = sin(angle);
 return Point(p.x + v.x*c-v.y*s,p.y + v.x*s + v.y*c);
 }
};

struct Line {
 Point s,e;
 Line() {

 }
 Line(Point _s,Point _e) {

Last
update:
2021/08/17
10:39

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

https://wiki.cvbbacm.com/ Printed on 2026/02/02 21:15

 s=_s;
 e=_e;
 }

};
struct polygon {
 int n;
 Point p[maxp];
 Line l[maxp];
 void input(int _n) {
 n = _n;
 for(int i = 0; i < n; i++)
 p[i].input();
 }
 void add(Point q) {
 p[n++] = q;
 }
 void getline() {
 for(int i = 0; i < n; i++) {
 l[i] = Line(p[i],p[(i+1)%n]);
 }
 }
 struct cmp {
 Point p;
 cmp(const Point &p0) {
 p = p0;
 }
 bool operator()(const Point &aa,const Point &bb) {
 Point a = aa, b = bb;
 int d = sgn((a-p)^(b-p));
 if(d == 0) {
 return sgn(a.distance(p)-b.distance(p)) < 0;
 }
 return d > 0;
 }
 };
 //进行极角排序
 //首先需要找到最左下角的点
 //需要重载号好 Point 的 < 操作符 (min 函数要用)
 void norm() {
 Point mi = p[0];
 for(int i = 1; i < n; i++)mi = min(mi,p[i]);
 sort(p,p+n,cmp(mi));
 }
 //得到凸包的另外一种方法
 //测试 LightOJ1203 LightOJ1239
 void Graham(polygon &convex) {
 norm();
 int &top = convex.n;
 top = 0;

2026/02/02 21:15 5/16 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(n == 1) {
 top = 1;
 convex.p[0] = p[0];
 return;
 }
 if(n == 2) {
 top = 2;
 convex.p[0] = p[0];
 convex.p[1] = p[1];
 if(convex.p[0] == convex.p[1])top--;
 return;
 }
 convex.p[0] = p[0];
 convex.p[1] = p[1];
 top = 2;
 for(int i = 2; i < n; i++) {
 while(top > 1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-
convex.p[top-2])) <= 0)top--;
 convex.p[top++] = p[i];
 }
 if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特 判
 }

 //下面是过凸包外一点 求凸包左右切点的板子
 int getl(int l,int r,Point po) {
 int ans=l,mid;
 l++;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn((p[mid]-po)^(p[(mid-1+n)%n]-p[mid]))<=0) {
 ans=mid;
 l=mid+1;
 } else r=mid-1;
 }
 return ans;
 }

 int getr(int l,int r,Point po) {
 int ans=r,mid;
 r--;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn((p[mid]-po)^(p[(mid+1)%n]-p[mid]))>=0) {
 ans=mid;
 r=mid-1;
 } else l=mid+1;
 }
 return ans;
 }

 void work(Point po,int id) {

Last
update:
2021/08/17
10:39

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

https://wiki.cvbbacm.com/ Printed on 2026/02/02 21:15

 int pos=0;
 if(sgn(po.x)>0) {
 int l=1,r=n-1,mid;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn(p[mid]^po)>=0) {
 pos=mid;
 l=mid+1;
 } else {
 r=mid-1;
 }
 }
 } else if(sgn(po.y)>0) {
 pos=n-1;
 }
 int l,r;
 if(sgn(po.x)>0) {
 l=getl(0,pos,po);
 r=getr(pos,n,po);
 } else {
 l=getl(maxv,n,po);
 r=getr(0,maxv,po);
 }
 if(r==0) r=n;
 xx[++xxs]= {id,l+1,r};
 }
 //到此结束
} PO,po,po1,PPO;

namespace Tree {
 const int MAXN=4e5+5;
 int lef[MAXN<<2],rig[MAXN<<2];
 pair<int,int> s[MAXN<<2],lazy[MAXN<<2];
 void build(int k,int L,int R) {
 lef[k]=L,rig[k]=R;
 if(lef[k]==rig[k])
 return;
 int M=L+R>>1;
 build(k<<1,L,M);
 build(k<<1|1,M+1,R);
 }
 void push_tag(int k,pair<int,int> v) {
 s[k]=max(s[k],v);
 lazy[k]=max(lazy[k],v);
 }
 void push_up(int k) {
 s[k]=max(s[k<<1],s[k<<1|1]);
 }
 void push_down(int k) {
 if(lazy[k].first) {

2026/02/02 21:15 7/16 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 push_tag(k<<1,lazy[k]);
 push_tag(k<<1|1,lazy[k]);
 lazy[k]=make_pair(0,0);
 }
 }
 void update(int k,int L,int R,pair<int,int> v) {
 if(L<=lef[k]&&rig[k]<=R) {
 push_tag(k,v);
 return;
 }
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=L)
 update(k<<1,L,R,v);
 if(mid<R)
 update(k<<1|1,L,R,v);
 push_up(k);
 }
 pair<int,int> query(int k,int pos) {
 if(lef[k]==rig[k])
 return s[k];
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=pos)
 return query(k<<1,pos);
 else
 return query(k<<1|1,pos);
 }
}
namespace JXM {
 const int MAXN=4e5+5;
 struct Node {
 int s,v,lch,rch;
 } node[MAXN*40];
 int root[MAXN],node_cnt;
 void update(int &k,int p,int vl,int vr,int pos,int v) {
 node[k=++node_cnt]=node[p];
 node[k].s++;
 if(vl==vr) {
 node[k].v=v;
 return;
 }
 int vm=vl+vr>>1;
 if(vm>=pos)
 update(node[k].lch,node[p].lch,vl,vm,pos,v);
 else
 update(node[k].rch,node[p].rch,vm+1,vr,pos,v);
 }
 int query_max(int k,int vl,int vr) {
 if(vl==vr)return vl;
 int vm=vl+vr>>1;

Last
update:
2021/08/17
10:39

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

https://wiki.cvbbacm.com/ Printed on 2026/02/02 21:15

 if(node[k].rch)
 return query_max(node[k].rch,vm+1,vr);
 else
 return query_max(node[k].lch,vl,vm);
 }
 int query(int k,int vl,int vr,int pos) {
 if(!k)return 0;
 if(vl==vr)return 1;
 int vm=vl+vr>>1;
 if(vm>=pos)
 return query(node[k].lch,vl,vm,pos);
 else
 return node[node[k].lch].s+query(node[k].rch,vm+1,vr,pos);
 }
 vector<pair<int,int> > res;
 void dfs(int k,int vl,int vr) {
 if(!k)return;
 if(vl==vr) {
 res.push_back(make_pair(vl,node[k].v));
 return;
 }
 int vm=vl+vr>>1;
 dfs(node[k].lch,vl,vm);
 dfs(node[k].rch,vm+1,vr);
 }
 void pt(int v) {
 enter(v);
 dfs(root[v],1,6);
 for(pair<int,int> p:res) {
 space(p.second);
 enter(p.first);
 }
 puts("");
 res.clear();
 }
 void solve() {
 int m=xxs;
 int n=PO.n,n2=PO.n<<1;
 Tree::build(1,1,n2);
 _rep(i,1,m) {
 if(xx[i].r<xx[i].l)xx[i].r+=n;
 Tree::update(1,xx[i].l,xx[i].r,make_pair(xx[i].r,xx[i].id));
 }
 int ans=MAXN;
 for(int i=n2; i; i--) {
 pair<int,int> t=Tree::query(1,i);
 if(t.first!=0) {
 update(root[i],root[t.first+1],1,n2,t.first,t.second);
 if(i<=n&&query_max(root[i],1,n2)>=i+n-1)
 ans=min(ans,query(root[i],1,n2,i+n-2)+1);

2026/02/02 21:15 9/16 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 }
 if(ans==MAXN) {
 puts("-1");
 return;
 }
 enter(ans);
 _rep(i,1,n) {
 if(root[i]&&query_max(root[i],1,n2)>=i+n-1) {
 if(ans==query(root[i],1,n2,i+n-2)+1) {
 dfs(root[i],1,n2);
 for(pair<int,int> p:res) {
 space(p.second);
 if(p.first>=i+n-1)
 break;
 }
 return;
 }
 }
 }
 }
}

int main() {
 cin>>n>>m;
 PPO.n=PO.n=n,po.n=m;
 for(int i=0; i<n; i++) {
 scanf("%lf %lf",&PPO.p[i].x,&PPO.p[i].y);
 }
 PPO.Graham(PO);
 Point pp=PO.p[0];
 for(int i=0; i<n; i++) PO.p[i]=PO.p[i]-pp;
 for(int i=0; i<n; i++) if(sgn(PO.p[i].x-PO.p[maxv].x)>=0) maxv=i;
 for(int i=0; i<m; i++) {
 scanf("%lf %lf",&po.p[i].x,&po.p[i].y);
 po.p[i]=po.p[i]-pp;
 }
 for(int i=0; i<m; i++) PO.work(po.p[i],i+1);
 JXM::solve();
 return 0;
}

第二种，由于对给定 l，最优策略为找到覆盖他的线段中的最大的右端点 r，然后跳到 $r+1$，于是每个
状态的后继都是唯一的。

因此如果对每个 l，建边 $l\to r+1$，可以得到一棵树。

考虑树上倍增，可以 $O(n\log n)$ 查询每个结点 $i=1\sim n$ 跳到不小于 $i+n-1$ 的祖先的最小步数得
到答案。

另外这也可以通过 dfs 维护根到当前结点的路径然后二分来实现。

Last
update:
2021/08/17
10:39

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

https://wiki.cvbbacm.com/ Printed on 2026/02/02 21:15

第三种，首先淘汰掉被另一条线段完全包含的线段，然后选取余下的线段中最短的线段的每个位置作为起
点暴力跳查询答案。

设最短的线段长度为 L，则每次跳的长度不小于 L，于是最多跳 $O(\frac nL)$ 次，于是总复杂度
$O(L\times \frac nL)\sim O(n)$。

关于淘汰被另一条线段完全包含的线段，也可以利用桶排等技巧 $O(n)$ 实现。

const double eps=1e-11;
const double inf=1e20;
const double pi=acos(-1);
const int maxp=300020;
int n,m;
struct xd {
 int id,l,r;
} xx[maxp];
int xxs,maxv;
int sgn(double x) {
 if(fabs(x)<eps) return 0;
 if(x<0) return -1;
 return 1;
}

struct Point {
 double x,y;
 Point() {}
 Point(double _x,double _y) {
 x = _x;
 y = _y;
 }
 void input() {
 scanf("%lf%lf",&x,&y);
 }
 void output() {
 printf("%.2f %.2f\n",x,y);
 }
 bool operator == (Point b)const {
 return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
 }
 bool operator < (Point b)const {
 return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
 }
 Point operator -(const Point &b)const {
 return Point(x-b.x,y-b.y);
 }
 //叉积
 double operator ^(const Point &b)const {
 return x*b.y-y*b.x;
 }
 //点积

2026/02/02 21:15 11/16 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 double operator *(const Point &b)const {
 return x*b.x + y*b.y;
 }
 //返回长度
 double len() {
 return hypot(x,y);//库函数
 }
 //返回长度的平方
 double len2() {
 return x*x + y*y;
 }
 //返回两点的距离
 double distance(Point p) {
 return hypot(x-p.x,y-p.y);
 }
 Point operator +(const Point &b)const {
 return Point(x+b.x,y+b.y);
 }
 Point operator *(const double &k)const {
 return Point(x*k,y*k);
 }
 Point operator /(const double &k)const {
 return Point(x/k,y/k);
 }
 //计算 pa 和 pb 的夹角
 //就是求这个点看 a,b 所成的夹角
 //测试 LightOJ1203
 double rad(Point a,Point b) {
 Point p = *this;
 return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));
 }
 //计算 pa 和 pb 的有向角
 double tmprad(Point a,Point b) {
 Point p = *this;
 return atan2(((a-p)^(b-p)),(a-p)*(b-p));
 }
 //化为长度为 r 的向量
 Point trunc(double r) {
 double l = len();
 if(!sgn(l))return *this;
 r /= l;
 return Point(x*r,y*r);
 }
 //逆时针旋转 90 度
 Point rotleft() {
 return Point(-y,x);
 }
 //顺时针旋转 90 度
 Point rotright() {
 return Point(y,-x);
 }

Last
update:
2021/08/17
10:39

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

https://wiki.cvbbacm.com/ Printed on 2026/02/02 21:15

 //绕着 p 点逆时针旋转 angle
 Point rotate(Point p,double angle) {
 Point v = (*this)-p;
 double c = cos(angle), s = sin(angle);
 return Point(p.x + v.x*c-v.y*s,p.y + v.x*s + v.y*c);
 }
};

struct Line {
 Point s,e;
 Line() {

 }
 Line(Point _s,Point _e) {
 s=_s;
 e=_e;
 }

};
struct polygon {
 int n;
 Point p[maxp];
 Line l[maxp];
 void input(int _n) {
 n = _n;
 for(int i = 0; i < n; i++)
 p[i].input();
 }
 void add(Point q) {
 p[n++] = q;
 }
 void getline() {
 for(int i = 0; i < n; i++) {
 l[i] = Line(p[i],p[(i+1)%n]);
 }
 }
 struct cmp {
 Point p;
 cmp(const Point &p0) {
 p = p0;
 }
 bool operator()(const Point &aa,const Point &bb) {
 Point a = aa, b = bb;
 int d = sgn((a-p)^(b-p));
 if(d == 0) {
 return sgn(a.distance(p)-b.distance(p)) < 0;
 }
 return d > 0;
 }
 };

2026/02/02 21:15 13/16 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 //进行极角排序
 //首先需要找到最左下角的点
 //需要重载号好 Point 的 < 操作符 (min 函数要用)
 void norm() {
 Point mi = p[0];
 for(int i = 1; i < n; i++)mi = min(mi,p[i]);
 sort(p,p+n,cmp(mi));
 }
 //得到凸包的另外一种方法
 //测试 LightOJ1203 LightOJ1239
 void Graham(polygon &convex) {
 norm();
 int &top = convex.n;
 top = 0;
 if(n == 1) {
 top = 1;
 convex.p[0] = p[0];
 return;
 }
 if(n == 2) {
 top = 2;
 convex.p[0] = p[0];
 convex.p[1] = p[1];
 if(convex.p[0] == convex.p[1])top--;
 return;
 }
 convex.p[0] = p[0];
 convex.p[1] = p[1];
 top = 2;
 for(int i = 2; i < n; i++) {
 while(top > 1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-
convex.p[top-2])) <= 0)top--;
 convex.p[top++] = p[i];
 }
 if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特 判
 }

 //下面是过凸包外一点 求凸包左右切点的板子
 int getl(int l,int r,Point po) {
 int ans=l,mid;
 l++;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn((p[mid]-po)^(p[(mid-1+n)%n]-p[mid]))<=0) {
 ans=mid;
 l=mid+1;
 } else r=mid-1;
 }
 return ans;
 }

Last
update:
2021/08/17
10:39

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

https://wiki.cvbbacm.com/ Printed on 2026/02/02 21:15

 int getr(int l,int r,Point po) {
 int ans=r,mid;
 r--;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn((p[mid]-po)^(p[(mid+1)%n]-p[mid]))>=0) {
 ans=mid;
 r=mid-1;
 } else l=mid+1;
 }
 return ans;
 }

 void work(Point po,int id) {
 int pos=0;
 if(sgn(po.x)>0) {
 int l=1,r=n-1,mid;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn(p[mid]^po)>=0) {
 pos=mid;
 l=mid+1;
 } else {
 r=mid-1;
 }
 }
 } else if(sgn(po.y)>0) {
 pos=n-1;
 }
 int l,r;
 if(sgn(po.x)>0) {
 l=getl(0,pos,po);
 r=getr(pos,n,po);
 } else {
 l=getl(maxv,n,po);
 r=getr(0,maxv,po);
 }
 if(r==0) r=n;
 xx[++xxs]= {id,l+1,r};
 }
 //到此结束
} PO,po,po1,PPO;
namespace JXM {
 const int MAXN=4e5+5;
 vector<xd> c[MAXN];
 pair<int,int> dp[MAXN];
 void solve() {
 int n=PO.n,n2=PO.n<<1;
 int m=xxs;
 _rep(i,1,m){

2026/02/02 21:15 15/16 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(xx[i].r<xx[i].l)xx[i].r+=n;
 c[xx[i].r-xx[i].l].push_back(xx[i]);
 }
 m=0;
 _for(i,0,MAXN){
 for(xd t:c[i])
 xx[++m]=t;
 }
 _rep(i,1,m){
// space(i);space(xx[i].l);enter(xx[i].r);
 dp[xx[i].l]=make_pair(xx[i].r,i);
 }
 _rep(i,1,n2)
 dp[i]=max(dp[i],dp[i-1]);
 _rep(i,1,n){
 pair<int,int> t1=dp[i],t2=dp[i+n];
 dp[i]=max(t1,make_pair(t2.first-n,t2.second));
 dp[i+n]=max(make_pair(t1.first+n,t1.second),t2);
 }
 int pos=0;
 _rep(i,1,n){
 if(dp[i].first<i){
 puts("-1");
 return;
 }
 if(!pos)
 pos=dp[i].second;
 else if(xx[pos].r-xx[pos].l>xx[dp[i].second].r-
xx[dp[i].second].l)
 pos=dp[i].second;
 }
 int ans=MAXN;
 _rep(i,xx[pos].l,xx[pos].r){
 int st=(i-1)%n+1,pos2=st,cnt=0;
 while(pos2<st+n){
 pos2=dp[pos2].first+1;
 cnt++;
 }
 ans=min(ans,cnt);
 }
 enter(ans);
 _rep(i,xx[pos].l,xx[pos].r){
 int st=(i-1)%n+1,pos2=st,cnt=0;
 while(pos2<st+n){
 pos2=dp[pos2].first+1;
 cnt++;
 }
 if(ans==cnt){
 int pos2=st;
 while(pos2<st+n){
 space(xx[dp[pos2].second].id);

Last
update:
2021/08/17
10:39

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

https://wiki.cvbbacm.com/ Printed on 2026/02/02 21:15

 pos2=dp[pos2].first+1;
 }
 return;
 }
 }
 }
}

int main() {
 cin>>n>>m;
 PPO.n=PO.n=n,po.n=m;
 for(int i=0; i<n; i++) {
 scanf("%lf %lf",&PPO.p[i].x,&PPO.p[i].y);
 }
 PPO.Graham(PO);
 Point pp=PO.p[0];
 for(int i=0; i<n; i++) PO.p[i]=PO.p[i]-pp;
 for(int i=0; i<n; i++) if(sgn(PO.p[i].x-PO.p[maxv].x)>=0) maxv=i;
 for(int i=0; i<m; i++) {
 scanf("%lf %lf",&po.p[i].x,&po.p[i].y);
 po.p[i]=po.p[i]-pp;
 }
 for(int i=0; i<m; i++) PO.work(po.p[i],i+1);
 JXM::solve();
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

Last update: 2021/08/17 10:39

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629167956

	补题情况
	题解
	J. Illuminations
	题意
	题解

