
2026/02/02 19:36 1/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 2 0 0
B 0 0 0
C 2 0 0
D 2 0 0
E 0 0 0
G 2 1 0
I 0 0 0
J 2 0 2
K 0 0 0

题解

A. Browser Games

题意

给定 n 个字符串，对 $i=1\sim n$，找出一个最小的前缀集合，满足：

对前 i 个字符串都至少有一个前缀位于该集合且对于后面的 $n-i$ 个字符串都不存在前缀属于这个集合。

数据保证不存在一个字符串是另一个字符串前缀的情况，且内存限制为 32 megabytes。

题解

首先不考虑内存限制，可以对所有串建立字典树，并用叶子结点代表每个字符串。

然后问题转化为从树上选择最少的结点集合，使得前 i 个字符串至少有一个祖先结点被选中，且后 $n-
i$ 个字符串不存在祖先结点被选中。

不难发现，如果一个结点的子树中叶子结点都属于前 i 个字符串，则以该结点为根的子树答案为 1。
否则该结点答案等于所有儿子结点答案之和。

建立字典树后依次处理 $i=1\sim n$ 的询问，动态更新每个结点的子树中的后 $n-i$ 个字符串个数以及以
该结点为根的子树答案。

每次询问的答案记为字典树根节点的答案，注意特判 $i=n$ 的询问，因为前缀不能是空串。

然后考虑内存限制，注意到只有一个儿子结点的结点都是可以压缩的，于是树上的关键结点个数可以卡到
$O(n)$。

最坏的情况是完全二叉树，这时节点个数是 $2n-1$，于是开两倍空间即可。

https://ac.nowcoder.com/acm/contest/11261

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

关于建树，可以递归构建，如果当前结点的字符串个数为 1 则直接返回。

否则找到最小的当前结点的所有字符串的非公共前缀长度，然后划分字符串，继续递归，同时记录非公共
前缀的位置用于后续更新操作比较。

const int MAXN=1e5+5,MAXS=MAXN<<1,MAXL=105;
char s[MAXN][MAXL],suf[MAXS];
int head[MAXS],nxt[MAXS],dep[MAXS],s1[MAXS],s2[MAXS],node_cnt;
vector<int> c[MAXS];
void build(int k,int d){
 s1[k]=c[k].size();
 if(s1[k]==1){
 c[k].clear();
 return;
 }
 while(true){
 int p1=c[k][0];
 bool flag=true;
 for(int p2:c[k]){
 if(s[p2][d]!=s[p1][d]){
 flag=false;
 break;
 }
 }
 if(flag)
 d++;
 else
 break;
 }
 dep[k]=d;
 for(int t:c[k]){
 int i=head[k];
 for(;i;i=nxt[i]){
 if(suf[i]==s[t][d])
 break;
 }
 if(!i){
 i=++node_cnt;
 nxt[i]=head[k];
 suf[i]=s[t][d];
 head[k]=i;
 }
 c[i].push_back(t);
 }
 c[k].clear();
 for(int i=head[k];i;i=nxt[i])
 build(i,d+1);
}
void update(int k,char *t){
 s1[k]--;

2026/02/02 19:36 3/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(s1[k]==0){
 s2[k]=1;
 return;
 }
 for(int i=head[k];i;i=nxt[i]){
 if(suf[i]==t[dep[k]]){
 s2[k]-=s2[i];
 update(i,t);
 s2[k]+=s2[i];
 break;
 }
 }
}
int main()
{
 int n=read_int();
 if(n==1){
 puts("1");
 return 0;
 }
 _rep(i,1,n){
 scanf("%s",s[i]);
 c[0].push_back(i);
 }
 build(0,0);
 _for(i,1,n){
 update(0,s[i]);
 enter(s2[0]);
 }
 int ans=0;
 for(int i=head[0];i;i=nxt[i])
 ans++;
 enter(dep[0]==0?ans:1);
 return 0;
}

C. Dance Party

题意

给定 $n\times 2$ 的二分图。对左部每个点，仅和右部 k_i 个点不连边。求二分图最大匹配。

题解

设 $k=\max_{i=1}^n k_i$。

先进行预匹配，每个左部点任选一个还未被匹配且有连边的右部点匹配，可以用 set 维护所有未

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

匹配的右部点，时间复杂度 $O(nk\log n)$。

接下来剩下的未匹配的点一定不超过 k 个，对每个点考虑匈牙利算法匹配， 总时间复杂度为 $O(km)$。

$O(m)\sim O(n^2)$，考虑优化。假定现在需要对点 i 进行匈牙利算法，将右部与点 i 不相邻的点染
黑，其余右部点染白。

对除点 i 以外的左部点，仅保留与黑点相关的连边，这样 $O(m)\sim O(nk)$，总时间复杂度
$O\left(nk^2\right)$ 足以通过此题。

关于算法的正确性，假设在原图上存在一条从 i 出发的增广路，且增广路上除了 i 以外有其他点的失
配边指向白点。

找到增广路上的最后一个白点，直接将 i 的失配边指向该点然后保留原增广路的剩余部分也可以一条增
广路。

同时该增广路上除了 i 其他点的失配边都指向黑点。因此只要原图存在一条从 i 出发的增广路则只保
留与黑点相关的连边也可以得到一条增广路。

const int MAXN=3e4+5,MAXK=105;
struct Edge{
 int to,next;
}edge[MAXN*MAXK];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
bitset<MAXN> bt[MAXN];
vector<int> g[MAXN];
namespace KM{
 set<int> s;
 int match[MAXN],vis[MAXN];
 bool dfs(int u,int k){
 if(vis[u]==k)
 return false;
 vis[u]=k;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(!match[v]||dfs(match[v],k))
 return match[v]=u,true;
 }
 return false;
 }
 bool get_pair(int n){
 _rep(u,1,n)
 s.insert(u);
 vector<int> vec;
 _rep(u,1,n){
 bool flag=true;
 for(int v:s){

2026/02/02 19:36 5/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(!bt[u][v]){
 match[v]=u;
 s.erase(v);
 flag=false;
 break;
 }
 }
 if(flag)
 vec.push_back(u);
 }
 for(int i:vec){
 mem(head,0);
 edge_cnt=0;
 _rep(u,1,n){
 for(int v:g[i]){
 if(!bt[u][v])
 Insert(u,v);
 }
 }
 _rep(v,1,n){
 if(!bt[i][v])
 Insert(i,v);
 }
 if(!dfs(i,i))
 return false;
 }
 return true;
 }
}
int ans[MAXN];
int main()
{
 int n=read_int();
 _rep(u,1,n){
 int k=read_int();
 while(k--){
 int v=read_int();
 g[u].push_back(v);
 bt[u][v]=1;
 }
 }
 if(KM::get_pair(n)){
 _rep(i,1,n)
 ans[KM::match[i]]=i;
 _rep(i,1,n)
 space(ans[i]);
 }
 else
 puts("-1");
 return 0;

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

}

D. Diameter Counting

题意

求所有 n 标号树的直径和。

题解1

考虑求树的直径的过程，可以先删去所有叶子结点，得到一棵新树，称为一次操作。然后再不断对新树进
行操作，知道最后剩下一个或两个结点。

此时如果只剩下一个结点，则树的直径为操作次数 $\times 2$。如果剩下两个结点，则树的直径为操作次
数 $\times 2+1$。

考虑通过逆算法反向构建树。设 $f(i,j)$ 表示有 j 个叶子结点的 i 标号树个数，假设上一步操作删除
了 $k(k\ge j)$ 个叶子。

于是问题等价于给这 k 个叶子找一个父结点，使得原来的 j 个叶子结点至少有一个儿子。

同时对于这 $i+k$ 个结点，标号是任意的，对所有 $i+k$ 标号树而言，删去 k 叶子结点得到的树的标
号方式实际上有 ${i+k\choose i}f(i,j)$ 种。

设 $g(i,j,k)$ 表示长度为 k 且每个位置有 i 种可选取值且特定的 j 个值至少出现一次的序列个数，
于是有

$$ f(i+k,k)\gets g(i,j,k)f(i,j){i+k\choose i} $$

接下来考虑求 $g(i,j,k)$，可以考虑序列前 $k-1$ 位，如果此时 j 个特定值都出现了至少一次，则第 k
位可以任取，于是有

$$ g(i,j,k)\gets i\times g(i,j,k-1) $$

如果前 $k-1$ 位只有 $j-1$ 个特殊值出现了至少一次，则显然前 $k-1$ 位的取值只有 $i-1$ 种，同时要从
j 个特殊值中确定一个放在第 k 位，有

$$ g(i,j,k)\gets j\times g(i-1,j-1,k-1) $$

最后设 $h(i,j)$ 表示有 j 个叶子的 i 标号树的直径之和。同样假设上一步操作删除了 $k(k\ge j)$ 个叶
子。

考虑原有的树的直径和操作带来的直径 $+2$ 的新贡献，于是有

$$ h(i+k,k)\gets g(i,j,k){i+k\choose i}(h(i,j)+2f(i,j)) $$

另外所有 $h(i+k,k)\gets 2f(i,j)g(i,j,k){i+k\choose i}$ 也可以等价于 $h(i,j)\gets 2f(i,j)$。时空间复杂度
$O\left(n^3\right)$。

2026/02/02 19:36 7/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

const int MAXN=505;
int mod;
int quick_pow(int n,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;
 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
int frac[MAXN],invf[MAXN];
int C(int n,int m){
 return 1LL*frac[n]*invf[m]%mod*invf[n-m]%mod;
}
int f[MAXN][MAXN],g[MAXN][MAXN][MAXN],h[MAXN][MAXN];
int main()
{
 int n=read_int();
 mod=read_int();
 frac[0]=1;
 _for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%mod;
 invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
 for(int i=MAXN-1;i;i--)
 invf[i-1]=1LL*invf[i]*i%mod;
 g[0][0][0]=1;
 _rep(i,1,n){
 g[i][0][0]=1;
 _rep(k,1,n)
 g[i][0][k]=1LL*g[i][0][k-1]*i%mod;
 _rep(j,1,i)_rep(k,j,n)
 g[i][j][k]=(1LL*g[i][j][k-1]*i+1LL*g[i-1][j-1][k-1]*j)%mod;
 }
 f[1][1]=f[2][2]=1;
 _rep(i,1,n)_rep(j,1,i)_rep(k,max(j,2),n-i)
 f[i+k][k]=(f[i+k][k]+1LL*f[i][j]*g[i][j][k]%mod*C(i+k,i))%mod;
 h[2][2]=1;
 _rep(i,3,n)_rep(j,1,i)
 h[i][j]=2LL*f[i][j]%mod;
 _rep(i,1,n)_rep(j,1,i)_rep(k,max(j,2),n-i)
 h[i+k][k]=(h[i+k][k]+1LL*h[i][j]*g[i][j][k]%mod*C(i+k,i))%mod;
 int ans=0;
 _rep(i,1,n)
 ans=(ans+h[n][i])%mod;
 enter(ans);
 return 0;
}

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

题解2

设 $f(i,j)$ 表示深度为 j 的 i 标号树个数，$g(i,j)$ 表示深度不超过 j 的 i 标号树个数。

对一个直径为 $2d+1$ 的 n 标号无根树，可以沿着直径的中心边切开，得到两个深度为 d 的有根树。

设 1 号点所在的有根树大小为 i，考虑为他分配 $i-1$ 个编号，于是直径为 $2d+1$ 的 n 标号无根树
个数为

$$ \sum_{i=1}^{n-1}f(i,d)f(n-i,d){n-1\choose i-1} $$

对一个直径为 $2d$ 的 n 标号无根树，可以认为是根节点连接至少两个深度等于 $d-1$ 的有根树。

利用容斥，用深度为 d 的 n 标号有根树个数减去根节点仅连接一个深度为 $d-1$ 的有根树个数的情
况。

根节点仅连接一个深度为 $d-1$ 的有根树可以认为是由一个深度不超过 $d-1$ 的有根树根节点连接一个深
度等于 $d-1$ 的有根树得到的。

于是直径为 $2d$ 的 n 标号无根树个数为

$$ f(n,d)-\sum_{i=1}^{n-1}f(i,d-1)g(n-i,d-1){n\choose i} $$

接下来考虑计算 $f(i,j),g(i,j)$。$f(i,j)$ 难以直接计算，但显然有 $f(i,j)=g(i,j)-g(i,j-1)$，于是只需要计算
$g(i,j)$。

对于深度不超过 j 的 i 标号树个数，可以先分配一个编号给根结点，然后从与根节点相连的子树中找
到编号最小的结点所在的子树。

设子树大小为 k，对该子树，他深度不超过 $j-1$，显然有 $g(k,j-1)$ 种。另外需要从剩余 $i-2$ 个编号
再分配 $k-1$ 个编号给子树。

对于余下的 $n-k$ 个点，深度仍然不超过 j，但根节点编号已经分配，所以总数为 $\frac {g(i-k,j)}{i-
k}$。于是有

$$ g(i,j)=\sum_{k=1}^{i-1}i{i-2\choose k-1}g(k,j-1)\frac {g(i-k,j)}{i-k} $$

时间复杂度 $O\left(n^3\right)$，空间复杂度 $O\left(n^2\right)$。

const int MAXN=505;
int mod;
int quick_pow(int n,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;
 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
int frac[MAXN],invf[MAXN],inv[MAXN];
int C(int n,int m){

2026/02/02 19:36 9/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 return 1LL*frac[n]*invf[m]%mod*invf[n-m]%mod;
}
int f[MAXN][MAXN],g[MAXN][MAXN];
int main()
{
 int n=read_int();
 mod=read_int();
 frac[0]=1;
 _for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%mod;
 invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
 for(int i=MAXN-1;i;i--){
 invf[i-1]=1LL*invf[i]*i%mod;
 inv[i]=1LL*invf[i]*frac[i-1]%mod;
 }
 g[1][0]=1;
 _rep(i,1,n){
 _for(j,1,i)_for(k,1,i)
 g[i][j]=(g[i][j]+1LL*g[k][j-1]*g[i-
k][j]%mod*C(i-2,k-1)%mod*i%mod*inv[i-k])%mod;
 _rep(j,i,n)
 g[i][j]=g[i][i-1];
 }
 f[1][0]=1;
 _rep(i,2,n)_for(j,1,i)
 f[i][j]=(g[i][j]-g[i][j-1])%mod;
 int ans=0;
 _for(i,1,n){
 int cnt=0,d=i/2;
 if(i&1){
 _for(j,1,n)
 cnt=(cnt+1LL*f[j][d]*f[n-j][d]%mod*C(n-1,j-1))%mod;
 }
 else{
 cnt=f[n][d];
 _for(j,1,n)
 cnt=(cnt-1LL*f[j][d-1]*g[n-j][d-1]%mod*C(n,j))%mod;
 }
 ans=(ans+1LL*cnt*i)%mod;
 }
 if(ans<0)ans+=mod;
 enter(ans);
 return 0;
}

G. Game of Death

题意

一个游戏，有 n 名玩家。每个玩家等概率选择一名除自己以为的人进行射击，射击的命中率为 p。

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

对每个 $k=1\sim n$ ，询问最后存活 k 人的概率。

题解

设 $f(k)$ 表示固定 k 个人的集合，这 k 个人全部死亡的概率。$g(k)$ 表示固定 k 个人的集合，死
亡的人是这个集合的子集的概率。

首先考虑计算 $g(k)$，事实上可以把所有人分成两种人，一种是在这个 k 人集合中的人，记为 A 类人。
另一种记为 B 类人。

于是只需要保证不杀死 B 类人即可。于是对 A 类人，这个概率为 $1-\frac {p(n-k)}{n-1}$。而对于
B 类人，这个概率为 $1-\frac {p(n-1-k)}{n-1}$。

于是有

$$ g(k)=\left(1-\frac {p(n-k)}{n-1}\right)^k\left(1-\frac {p(n-1-k)}{n-1}\right)^{n-k} $$

同时有 $g(k)=\sum_{i=0}^k {k\choose i}f(i)$，根据二项式反演，得 $$ f(k)=\sum_{i=0}^k (-1)^{k-
i}{k\choose i}g(i)=k!\sum_{i=0}^k\frac{(-1)^{k-i}}{(k-i)!}\frac{g(i)}{i!} $$ 卷积计算即可，最终
k 人死亡的答案为 ${n\choose k}f(k)$。时间复杂度 $O(n\log n)$。

const int MAXN=3e5+5,mod=998244353;
int quick_pow(int n,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;
 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
namespace Poly{
 const int G=3,Mod=998244353;
 int rev[MAXN<<2],Wn[30][2];
 void init(){
 int m=Mod-1,lg2=0;
 while(m%2==0)m>>=1,lg2++;
 Wn[lg2][1]=quick_pow(G,m);
 Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
 while(lg2){
 m<<=1,lg2--;
 Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
 Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
 }
 }
 int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;

2026/02/02 19:36 11/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
 }
 void NTT(int *f,int n,bool type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 int t1,t2;
 for(int i=1,lg2=0;i<n;i<<=1,lg2++){
 int w=Wn[lg2+1][type];
 for(int j=0;j<n;j+=(i<<1)){
 int cur=1;
 _for(k,j,j+i){
 t1=f[k],t2=1LL*cur*f[k+i]%Mod;
 f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
 cur=1LL*cur*w%Mod;
 }
 }
 }
 if(!type){
 int div=quick_pow(n,Mod-2);
 _for(i,0,n)f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
 }
 }
 void mul(int *f,int _n,int *g,int _m){
 int n=build(_n+_m-2);
 _for(i,_n,n)f[i]=0;_for(i,_m,n)g[i]=0;
 NTT(f,n,1);NTT(g,n,1);
 _for(i,0,n)f[i]=1LL*f[i]*g[i]%Mod;
 NTT(f,n,0);
 }
}
int frac[MAXN],invf[MAXN];
int C(int n,int m){
 return 1LL*frac[n]*invf[m]%mod*invf[n-m]%mod;
}
int f[MAXN<<2],g[MAXN<<2];
int main()
{
 Poly::init();
 int n=read_int(),a=read_int(),b=read_int();
 int p=1LL*a*quick_pow(b,mod-2)%mod;
 frac[0]=1;
 _for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%mod;
 invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
 for(int i=MAXN-1;i;i--)
 invf[i-1]=1LL*invf[i]*i%mod;
 int div=quick_pow(n-1,mod-2);
 _rep(i,0,n){
 LL t1=1-1LL*p*(n-i)%mod*div;
 LL t2=1-1LL*p*(n-1-i)%mod*div;
 g[i]=1LL*quick_pow(t1%mod,i)*quick_pow(t2%mod,n-i)%mod;

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

 g[i]=1LL*g[i]*invf[i]%mod;
 f[i]=(i&1)?-invf[i]:invf[i];
 }
 Poly::mul(f,n+1,g,n+1);
 _rep(i,0,n)
 f[i]=1LL*f[i]*frac[i]%mod*C(n,i)%mod;
 _rep(i,0,n)
 enter(f[n-i]);
 return 0;
}

J. Illuminations

题意

给一个凸多边形，和凸多边形外侧若干个点，每个点作为一盏灯，向四面八方发出光线，让用最少的点照
亮平面除凸包内部外所有区域，如果不存在方案输出 -1 。

题解

这题可以分成两个部分，一个是求凸包切线部分，一个是求环区间最小覆盖部分。

我们注意到，一个点能照亮的最大区域是这个点对于这个凸包求左右两条切线，然后点亮所有区域的等价
条件是所有边都被一个点的两条切线夹起来过，求切线就是一个二分的板子，然后这个问题就转化为环形
结构内给若干个线段（可以跨过原点），求最少的线段的数量，覆盖 1 到 n 的所有点。

关于求环区间最小覆盖部分，首先肯定是断环成链，然后枚举 $i=1\sim n$ 区间 $[i,i+n)$ 的最小线段覆
盖，但这是 $O\left(n^2\right)$ 的，有以下几种解法。

第一种，本人最初过题思路，设 $\text{dp}(l,r)$ 表示区间 $[l,r]$ 的最小线段覆盖。

固定 l，显然 $\text{dp}(l,r)$ 是分段的。然后对给定 l，显然策略为找到覆盖他的线段中的最大的右端
点 k。

于是有

$$ \text{dp}(l,i) \begin{cases} 1, &i\le k\\ \text{dp}(k+1,i)+1, &i\gt k \end{cases} $$

于是可以可持久化线段树维护每个 $\text{dp}(i,\ast)$ 数组的所有分段点，然后 $O(n\log n)$ 查询
$\text{dp}(i,i+n-1)(i=1\sim n)$，得到答案。

const double eps=1e-11;
const double inf=1e20;
const double pi=acos(-1);
const int maxp=300020;
int n,m;
struct xd {
 int id,l,r;

2026/02/02 19:36 13/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

} xx[maxp];
int xxs,maxv;
int sgn(double x) {
 if(fabs(x)<eps) return 0;
 if(x<0) return -1;
 return 1;
}

struct Point {
 double x,y;
 Point() {}
 Point(double _x,double _y) {
 x = _x;
 y = _y;
 }
 void input() {
 scanf("%lf%lf",&x,&y);
 }
 void output() {
 printf("%.2f %.2f\n",x,y);
 }
 bool operator == (Point b)const {
 return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
 }
 bool operator < (Point b)const {
 return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
 }
 Point operator -(const Point &b)const {
 return Point(x-b.x,y-b.y);
 }
 //叉积
 double operator ^(const Point &b)const {
 return x*b.y-y*b.x;
 }
 //点积
 double operator *(const Point &b)const {
 return x*b.x + y*b.y;
 }
 //返回长度
 double len() {
 return hypot(x,y);//库函数
 }
 //返回长度的平方
 double len2() {
 return x*x + y*y;
 }
 //返回两点的距离
 double distance(Point p) {
 return hypot(x-p.x,y-p.y);
 }
 Point operator +(const Point &b)const {

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

 return Point(x+b.x,y+b.y);
 }
 Point operator *(const double &k)const {
 return Point(x*k,y*k);
 }
 Point operator /(const double &k)const {
 return Point(x/k,y/k);
 }
 //计算 pa 和 pb 的夹角
 //就是求这个点看 a,b 所成的夹角
 //测试 LightOJ1203
 double rad(Point a,Point b) {
 Point p = *this;
 return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));
 }
 //计算 pa 和 pb 的有向角
 double tmprad(Point a,Point b) {
 Point p = *this;
 return atan2(((a-p)^(b-p)),(a-p)*(b-p));
 }
 //化为长度为 r 的向量
 Point trunc(double r) {
 double l = len();
 if(!sgn(l))return *this;
 r /= l;
 return Point(x*r,y*r);
 }
 //逆时针旋转 90 度
 Point rotleft() {
 return Point(-y,x);
 }
 //顺时针旋转 90 度
 Point rotright() {
 return Point(y,-x);
 }
 //绕着 p 点逆时针旋转 angle
 Point rotate(Point p,double angle) {
 Point v = (*this)-p;
 double c = cos(angle), s = sin(angle);
 return Point(p.x + v.x*c-v.y*s,p.y + v.x*s + v.y*c);
 }
};

struct Line {
 Point s,e;
 Line() {

 }
 Line(Point _s,Point _e) {
 s=_s;

2026/02/02 19:36 15/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 e=_e;
 }

};
struct polygon {
 int n;
 Point p[maxp];
 Line l[maxp];
 void input(int _n) {
 n = _n;
 for(int i = 0; i < n; i++)
 p[i].input();
 }
 void add(Point q) {
 p[n++] = q;
 }
 void getline() {
 for(int i = 0; i < n; i++) {
 l[i] = Line(p[i],p[(i+1)%n]);
 }
 }
 struct cmp {
 Point p;
 cmp(const Point &p0) {
 p = p0;
 }
 bool operator()(const Point &aa,const Point &bb) {
 Point a = aa, b = bb;
 int d = sgn((a-p)^(b-p));
 if(d == 0) {
 return sgn(a.distance(p)-b.distance(p)) < 0;
 }
 return d > 0;
 }
 };
 //进行极角排序
 //首先需要找到最左下角的点
 //需要重载号好 Point 的 < 操作符 (min 函数要用)
 void norm() {
 Point mi = p[0];
 for(int i = 1; i < n; i++)mi = min(mi,p[i]);
 sort(p,p+n,cmp(mi));
 }
 //得到凸包的另外一种方法
 //测试 LightOJ1203 LightOJ1239
 void Graham(polygon &convex) {
 norm();
 int &top = convex.n;
 top = 0;
 if(n == 1) {
 top = 1;

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

 convex.p[0] = p[0];
 return;
 }
 if(n == 2) {
 top = 2;
 convex.p[0] = p[0];
 convex.p[1] = p[1];
 if(convex.p[0] == convex.p[1])top--;
 return;
 }
 convex.p[0] = p[0];
 convex.p[1] = p[1];
 top = 2;
 for(int i = 2; i < n; i++) {
 while(top > 1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-
convex.p[top-2])) <= 0)top--;
 convex.p[top++] = p[i];
 }
 if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特 判
 }

 //下面是过凸包外一点 求凸包左右切点的板子
 int getl(int l,int r,Point po) {
 int ans=l,mid;
 l++;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn((p[mid]-po)^(p[(mid-1+n)%n]-p[mid]))<=0) {
 ans=mid;
 l=mid+1;
 } else r=mid-1;
 }
 return ans;
 }

 int getr(int l,int r,Point po) {
 int ans=r,mid;
 r--;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn((p[mid]-po)^(p[(mid+1)%n]-p[mid]))>=0) {
 ans=mid;
 r=mid-1;
 } else l=mid+1;
 }
 return ans;
 }

 void work(Point po,int id) {
 int pos=0;

2026/02/02 19:36 17/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(sgn(po.x)>0) {
 int l=1,r=n-1,mid;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn(p[mid]^po)>=0) {
 pos=mid;
 l=mid+1;
 } else {
 r=mid-1;
 }
 }
 } else if(sgn(po.y)>0) {
 pos=n-1;
 }
 int l,r;
 if(sgn(po.x)>0) {
 l=getl(0,pos,po);
 r=getr(pos,n,po);
 } else {
 l=getl(maxv,n,po);
 r=getr(0,maxv,po);
 }
 if(r==0) r=n;
 xx[++xxs]= {id,l+1,r};
 }
 //到此结束
} PO,po,po1,PPO;

namespace Tree {
 const int MAXN=4e5+5;
 int lef[MAXN<<2],rig[MAXN<<2];
 pair<int,int> s[MAXN<<2],lazy[MAXN<<2];
 void build(int k,int L,int R) {
 lef[k]=L,rig[k]=R;
 if(lef[k]==rig[k])
 return;
 int M=L+R>>1;
 build(k<<1,L,M);
 build(k<<1|1,M+1,R);
 }
 void push_tag(int k,pair<int,int> v) {
 s[k]=max(s[k],v);
 lazy[k]=max(lazy[k],v);
 }
 void push_up(int k) {
 s[k]=max(s[k<<1],s[k<<1|1]);
 }
 void push_down(int k) {
 if(lazy[k].first) {
 push_tag(k<<1,lazy[k]);
 push_tag(k<<1|1,lazy[k]);

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

 lazy[k]=make_pair(0,0);
 }
 }
 void update(int k,int L,int R,pair<int,int> v) {
 if(L<=lef[k]&&rig[k]<=R) {
 push_tag(k,v);
 return;
 }
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=L)
 update(k<<1,L,R,v);
 if(mid<R)
 update(k<<1|1,L,R,v);
 push_up(k);
 }
 pair<int,int> query(int k,int pos) {
 if(lef[k]==rig[k])
 return s[k];
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=pos)
 return query(k<<1,pos);
 else
 return query(k<<1|1,pos);
 }
}
namespace JXM {
 const int MAXN=4e5+5;
 struct Node {
 int s,v,lch,rch;
 } node[MAXN*40];
 int root[MAXN],node_cnt;
 void update(int &k,int p,int vl,int vr,int pos,int v) {
 node[k=++node_cnt]=node[p];
 node[k].s++;
 if(vl==vr) {
 node[k].v=v;
 return;
 }
 int vm=vl+vr>>1;
 if(vm>=pos)
 update(node[k].lch,node[p].lch,vl,vm,pos,v);
 else
 update(node[k].rch,node[p].rch,vm+1,vr,pos,v);
 }
 int query_max(int k,int vl,int vr) {
 if(vl==vr)return vl;
 int vm=vl+vr>>1;
 if(node[k].rch)

2026/02/02 19:36 19/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 return query_max(node[k].rch,vm+1,vr);
 else
 return query_max(node[k].lch,vl,vm);
 }
 int query(int k,int vl,int vr,int pos) {
 if(!k)return 0;
 if(vl==vr)return 1;
 int vm=vl+vr>>1;
 if(vm>=pos)
 return query(node[k].lch,vl,vm,pos);
 else
 return node[node[k].lch].s+query(node[k].rch,vm+1,vr,pos);
 }
 vector<pair<int,int> > res;
 void dfs(int k,int vl,int vr) {
 if(!k)return;
 if(vl==vr) {
 res.push_back(make_pair(vl,node[k].v));
 return;
 }
 int vm=vl+vr>>1;
 dfs(node[k].lch,vl,vm);
 dfs(node[k].rch,vm+1,vr);
 }
 void pt(int v) {
 enter(v);
 dfs(root[v],1,6);
 for(pair<int,int> p:res) {
 space(p.second);
 enter(p.first);
 }
 puts("");
 res.clear();
 }
 void solve() {
 int m=xxs;
 int n=PO.n,n2=PO.n<<1;
 Tree::build(1,1,n2);
 _rep(i,1,m) {
 if(xx[i].r<xx[i].l)xx[i].r+=n;
 Tree::update(1,xx[i].l,xx[i].r,make_pair(xx[i].r,xx[i].id));
 }
 int ans=MAXN;
 for(int i=n2; i; i--) {
 pair<int,int> t=Tree::query(1,i);
 if(t.first!=0) {
 update(root[i],root[t.first+1],1,n2,t.first,t.second);
 if(i<=n&&query_max(root[i],1,n2)>=i+n-1)
 ans=min(ans,query(root[i],1,n2,i+n-2)+1);
 }
 }

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

 if(ans==MAXN) {
 puts("-1");
 return;
 }
 enter(ans);
 _rep(i,1,n) {
 if(root[i]&&query_max(root[i],1,n2)>=i+n-1) {
 if(ans==query(root[i],1,n2,i+n-2)+1) {
 dfs(root[i],1,n2);
 for(pair<int,int> p:res) {
 space(p.second);
 if(p.first>=i+n-1)
 break;
 }
 return;
 }
 }
 }
 }
}

int main() {
 cin>>n>>m;
 PPO.n=PO.n=n,po.n=m;
 for(int i=0; i<n; i++) {
 scanf("%lf %lf",&PPO.p[i].x,&PPO.p[i].y);
 }
 PPO.Graham(PO);
 Point pp=PO.p[0];
 for(int i=0; i<n; i++) PO.p[i]=PO.p[i]-pp;
 for(int i=0; i<n; i++) if(sgn(PO.p[i].x-PO.p[maxv].x)>=0) maxv=i;
 for(int i=0; i<m; i++) {
 scanf("%lf %lf",&po.p[i].x,&po.p[i].y);
 po.p[i]=po.p[i]-pp;
 }
 for(int i=0; i<m; i++) PO.work(po.p[i],i+1);
 JXM::solve();
 return 0;
}

第二种，由于对给定 l，最优策略为找到覆盖他的线段中的最大的右端点 r，然后跳到 $r+1$，于是每个
状态的后继都是唯一的。

因此如果对每个 l，建边 $l\to r+1$，可以得到一棵树。

考虑树上倍增，可以 $O(n\log n)$ 查询每个结点 $i=1\sim n$ 跳到不小于 $i+n-1$ 的祖先的最小步数得
到答案。

另外这也可以通过 dfs 维护根到当前结点的路径然后二分来实现。

第三种，首先淘汰掉被另一条线段完全包含的线段，然后选取余下的线段中最短的线段的每个位置作为起

2026/02/02 19:36 21/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

点暴力跳查询答案。

设最短的线段长度为 L，则每次跳的长度不小于 L，于是最多跳 $O(\frac nL)$ 次，于是总复杂度
$O(L\times \frac nL)\sim O(n)$。

关于淘汰被另一条线段完全包含的线段，也可以利用桶排等技巧 $O(n)$ 实现。

关于为什么选最短的线段的每个位置作为起点可以保证得到最优解，本人无法证明。

const double eps=1e-11;
const double inf=1e20;
const double pi=acos(-1);
const int maxp=300020;
int n,m;
struct xd {
 int id,l,r;
} xx[maxp];
int xxs,maxv;
int sgn(double x) {
 if(fabs(x)<eps) return 0;
 if(x<0) return -1;
 return 1;
}

struct Point {
 double x,y;
 Point() {}
 Point(double _x,double _y) {
 x = _x;
 y = _y;
 }
 void input() {
 scanf("%lf%lf",&x,&y);
 }
 void output() {
 printf("%.2f %.2f\n",x,y);
 }
 bool operator == (Point b)const {
 return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
 }
 bool operator < (Point b)const {
 return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
 }
 Point operator -(const Point &b)const {
 return Point(x-b.x,y-b.y);
 }
 //叉积
 double operator ^(const Point &b)const {
 return x*b.y-y*b.x;
 }
 //点积

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

 double operator *(const Point &b)const {
 return x*b.x + y*b.y;
 }
 //返回长度
 double len() {
 return hypot(x,y);//库函数
 }
 //返回长度的平方
 double len2() {
 return x*x + y*y;
 }
 //返回两点的距离
 double distance(Point p) {
 return hypot(x-p.x,y-p.y);
 }
 Point operator +(const Point &b)const {
 return Point(x+b.x,y+b.y);
 }
 Point operator *(const double &k)const {
 return Point(x*k,y*k);
 }
 Point operator /(const double &k)const {
 return Point(x/k,y/k);
 }
 //计算 pa 和 pb 的夹角
 //就是求这个点看 a,b 所成的夹角
 //测试 LightOJ1203
 double rad(Point a,Point b) {
 Point p = *this;
 return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));
 }
 //计算 pa 和 pb 的有向角
 double tmprad(Point a,Point b) {
 Point p = *this;
 return atan2(((a-p)^(b-p)),(a-p)*(b-p));
 }
 //化为长度为 r 的向量
 Point trunc(double r) {
 double l = len();
 if(!sgn(l))return *this;
 r /= l;
 return Point(x*r,y*r);
 }
 //逆时针旋转 90 度
 Point rotleft() {
 return Point(-y,x);
 }
 //顺时针旋转 90 度
 Point rotright() {
 return Point(y,-x);

2026/02/02 19:36 23/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 //绕着 p 点逆时针旋转 angle
 Point rotate(Point p,double angle) {
 Point v = (*this)-p;
 double c = cos(angle), s = sin(angle);
 return Point(p.x + v.x*c-v.y*s,p.y + v.x*s + v.y*c);
 }
};

struct Line {
 Point s,e;
 Line() {

 }
 Line(Point _s,Point _e) {
 s=_s;
 e=_e;
 }

};
struct polygon {
 int n;
 Point p[maxp];
 Line l[maxp];
 void input(int _n) {
 n = _n;
 for(int i = 0; i < n; i++)
 p[i].input();
 }
 void add(Point q) {
 p[n++] = q;
 }
 void getline() {
 for(int i = 0; i < n; i++) {
 l[i] = Line(p[i],p[(i+1)%n]);
 }
 }
 struct cmp {
 Point p;
 cmp(const Point &p0) {
 p = p0;
 }
 bool operator()(const Point &aa,const Point &bb) {
 Point a = aa, b = bb;
 int d = sgn((a-p)^(b-p));
 if(d == 0) {
 return sgn(a.distance(p)-b.distance(p)) < 0;
 }
 return d > 0;
 }
 };

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

 //进行极角排序
 //首先需要找到最左下角的点
 //需要重载号好 Point 的 < 操作符 (min 函数要用)
 void norm() {
 Point mi = p[0];
 for(int i = 1; i < n; i++)mi = min(mi,p[i]);
 sort(p,p+n,cmp(mi));
 }
 //得到凸包的另外一种方法
 //测试 LightOJ1203 LightOJ1239
 void Graham(polygon &convex) {
 norm();
 int &top = convex.n;
 top = 0;
 if(n == 1) {
 top = 1;
 convex.p[0] = p[0];
 return;
 }
 if(n == 2) {
 top = 2;
 convex.p[0] = p[0];
 convex.p[1] = p[1];
 if(convex.p[0] == convex.p[1])top--;
 return;
 }
 convex.p[0] = p[0];
 convex.p[1] = p[1];
 top = 2;
 for(int i = 2; i < n; i++) {
 while(top > 1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-
convex.p[top-2])) <= 0)top--;
 convex.p[top++] = p[i];
 }
 if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特 判
 }

 //下面是过凸包外一点 求凸包左右切点的板子
 int getl(int l,int r,Point po) {
 int ans=l,mid;
 l++;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn((p[mid]-po)^(p[(mid-1+n)%n]-p[mid]))<=0) {
 ans=mid;
 l=mid+1;
 } else r=mid-1;
 }
 return ans;
 }

2026/02/02 19:36 25/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 int getr(int l,int r,Point po) {
 int ans=r,mid;
 r--;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn((p[mid]-po)^(p[(mid+1)%n]-p[mid]))>=0) {
 ans=mid;
 r=mid-1;
 } else l=mid+1;
 }
 return ans;
 }

 void work(Point po,int id) {
 int pos=0;
 if(sgn(po.x)>0) {
 int l=1,r=n-1,mid;
 while(l<=r) {
 mid=l+r>>1;
 if(sgn(p[mid]^po)>=0) {
 pos=mid;
 l=mid+1;
 } else {
 r=mid-1;
 }
 }
 } else if(sgn(po.y)>0) {
 pos=n-1;
 }
 int l,r;
 if(sgn(po.x)>0) {
 l=getl(0,pos,po);
 r=getr(pos,n,po);
 } else {
 l=getl(maxv,n,po);
 r=getr(0,maxv,po);
 }
 if(r==0) r=n;
 xx[++xxs]= {id,l+1,r};
 }
 //到此结束
} PO,po,po1,PPO;
namespace JXM {
 const int MAXN=4e5+5;
 vector<xd> c[MAXN];
 pair<int,int> dp[MAXN];
 void solve() {
 int n=PO.n,n2=PO.n<<1;
 int m=xxs;
 _rep(i,1,m){

Last
update:
2021/08/18
20:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

 if(xx[i].r<xx[i].l)xx[i].r+=n;
 c[xx[i].r-xx[i].l].push_back(xx[i]);
 }
 m=0;
 _for(i,0,MAXN){
 for(xd t:c[i])
 xx[++m]=t;
 }
 _rep(i,1,m){
// space(i);space(xx[i].l);enter(xx[i].r);
 dp[xx[i].l]=make_pair(xx[i].r,i);
 }
 _rep(i,1,n2)
 dp[i]=max(dp[i],dp[i-1]);
 _rep(i,1,n){
 pair<int,int> t1=dp[i],t2=dp[i+n];
 dp[i]=max(t1,make_pair(t2.first-n,t2.second));
 dp[i+n]=max(make_pair(t1.first+n,t1.second),t2);
 }
 int pos=0;
 _rep(i,1,n){
 if(dp[i].first<i){
 puts("-1");
 return;
 }
 if(!pos)
 pos=dp[i].second;
 else if(xx[pos].r-xx[pos].l>xx[dp[i].second].r-
xx[dp[i].second].l)
 pos=dp[i].second;
 }
 int ans=MAXN;
 _rep(i,xx[pos].l,xx[pos].r){
 int st=(i-1)%n+1,pos2=st,cnt=0;
 while(pos2<st+n){
 pos2=dp[pos2].first+1;
 cnt++;
 }
 ans=min(ans,cnt);
 }
 enter(ans);
 _rep(i,xx[pos].l,xx[pos].r){
 int st=(i-1)%n+1,pos2=st,cnt=0;
 while(pos2<st+n){
 pos2=dp[pos2].first+1;
 cnt++;
 }
 if(ans==cnt){
 int pos2=st;
 while(pos2<st+n){

2026/02/02 19:36 27/27 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 space(xx[dp[pos2].second].id);
 pos2=dp[pos2].first+1;
 }
 return;
 }
 }
 }
}

int main() {
 cin>>n>>m;
 PPO.n=PO.n=n,po.n=m;
 for(int i=0; i<n; i++) {
 scanf("%lf %lf",&PPO.p[i].x,&PPO.p[i].y);
 }
 PPO.Graham(PO);
 Point pp=PO.p[0];
 for(int i=0; i<n; i++) PO.p[i]=PO.p[i]-pp;
 for(int i=0; i<n; i++) if(sgn(PO.p[i].x-PO.p[maxv].x)>=0) maxv=i;
 for(int i=0; i<m; i++) {
 scanf("%lf %lf",&po.p[i].x,&po.p[i].y);
 po.p[i]=po.p[i]-pp;
 }
 for(int i=0; i<m; i++) PO.work(po.p[i],i+1);
 JXM::solve();
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

Last update: 2021/08/18 20:48

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629290898

	补题情况
	题解
	A. Browser Games
	题意
	题解

	C. Dance Party
	题意
	题解

	D. Diameter Counting
	题意
	题解1
	题解2

	G. Game of Death
	题意
	题解

	J. Illuminations
	题意
	题解

