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比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 2 2 0
B 0 0 0
C 2 2 0
D 2 1 0
E 0 0 0
G 2 1 0
I 0 0 0
J 2 0 2
K 2 0 0

题解

A. Browser Games

题意

给定 $n$ 个字符串，对 $i=1\sim n$，找出一个最小的前缀集合，满足：

对前 $i$ 个字符串都至少有一个前缀位于该集合且对于后面的 $n-i$ 个字符串都不存在前缀属于这个集合。

数据保证不存在一个字符串是另一个字符串前缀的情况，且内存限制为 $32\text{ megabytes}$。

题解

首先不考虑内存限制，可以对所有串建立字典树，并用叶子结点代表每个字符串。

然后问题转化为从树上选择最少的结点集合，使得前 $i$ 个字符串至少有一个祖先结点被选中，且后 $n-
i$ 个字符串不存在祖先结点被选中。

不难发现，如果一个结点的子树中叶子结点都属于前 $i$ 个字符串，则以该结点为根的子树答案为 $1$。
否则该结点答案等于所有儿子结点答案之和。

建立字典树后依次处理 $i=1\sim n$ 的询问，动态更新每个结点的子树中的后 $n-i$ 个字符串个数以及以
该结点为根的子树答案。

每次询问的答案记为字典树根节点的答案，注意特判 $i=n$ 的询问，因为前缀不能是空串。

然后考虑内存限制，注意到只有一个儿子结点的结点都是可以压缩的，于是树上的关键结点个数可以卡到
$O(n)$。

最坏的情况是完全二叉树，这时节点个数是 $2n-1$，于是开两倍空间即可。

https://ac.nowcoder.com/acm/contest/11261
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关于建树，可以递归构建，如果当前结点的字符串个数为 $1$ 则直接返回。

否则找到最小的当前结点的所有字符串的非公共前缀长度，然后划分字符串，继续递归，同时记录非公共
前缀的位置用于后续更新操作比较。

const int MAXN=1e5+5,MAXS=MAXN<<1,MAXL=105;
char s[MAXN][MAXL],suf[MAXS];
int head[MAXS],nxt[MAXS],dep[MAXS],s1[MAXS],s2[MAXS],node_cnt;
vector<int> c[MAXS];
void build(int k,int d){
    s1[k]=c[k].size();
    if(s1[k]==1){
        c[k].clear();
        return;
    }
    while(true){
        int p1=c[k][0];
        bool flag=true;
        for(int p2:c[k]){
            if(s[p2][d]!=s[p1][d]){
                flag=false;
                break;
            }
        }
        if(flag)
        d++;
        else
        break;
    }
    dep[k]=d;
    for(int t:c[k]){
        int i=head[k];
        for(;i;i=nxt[i]){
            if(suf[i]==s[t][d])
            break;
        }
        if(!i){
            i=++node_cnt;
            nxt[i]=head[k];
            suf[i]=s[t][d];
            head[k]=i;
        }
        c[i].push_back(t);
    }
    c[k].clear();
    for(int i=head[k];i;i=nxt[i])
    build(i,d+1);
}
void update(int k,char *t){
    s1[k]--;
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    if(s1[k]==0){
        s2[k]=1;
        return;
    }
    for(int i=head[k];i;i=nxt[i]){
        if(suf[i]==t[dep[k]]){
            s2[k]-=s2[i];
            update(i,t);
            s2[k]+=s2[i];
            break;
        }
    }
}
int main()
{
    int n=read_int();
    if(n==1){
        puts("1");
        return 0;
    }
    _rep(i,1,n){
        scanf("%s",s[i]);
        c[0].push_back(i);
    }
    build(0,0);
    _for(i,1,n){
        update(0,s[i]);
        enter(s2[0]);
    }
    int ans=0;
    for(int i=head[0];i;i=nxt[i])
    ans++;
    enter(dep[0]==0?ans:1);
    return 0;
}

C. Dance Party

题意

给定 $n\times 2$ 的二分图。对左部每个点，仅和右部 $k_i$ 个点不连边。求二分图最大匹配。

题解

设 $k=\max_{i=1}^n k_i$。

先进行预匹配，每个左部点任选一个还未被匹配且有连边的右部点匹配，可以用 $\text{set}$ 维护所有未



Last
update:
2021/08/21
01:26

2020-2021:teams:legal_string:组队训练
比赛记录:contest16 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest16&rev=1629480410

https://wiki.cvbbacm.com/ Printed on 2026/02/02 19:36

匹配的右部点，时间复杂度 $O(nk\log n)$。

接下来剩下的未匹配的点一定不超过 $k$ 个，对每个点考虑匈牙利算法匹配， 总时间复杂度为 $O(km)$。

$O(m)\sim O(n^2)$，考虑优化。假定现在需要对点 $i$ 进行匈牙利算法，将右部与点 $i$ 不相邻的点染
黑，其余右部点染白。

对除点 $i$ 以外的左部点，仅保留与黑点相关的连边，这样 $O(m)\sim O(nk)$，总时间复杂度
$O\left(nk^2\right)$ 足以通过此题。

关于算法的正确性，假设在原图上存在一条从 $i$ 出发的增广路，且增广路上除了 $i$ 以外有其他点的失
配边指向白点。

找到增广路上的最后一个白点，直接将 $i$ 的失配边指向该点然后保留原增广路的剩余部分也可以一条增
广路。

同时该增广路上除了 $i$ 其他点的失配边都指向黑点。因此只要原图存在一条从 $i$ 出发的增广路则只保
留与黑点相关的连边也可以得到一条增广路。

const int MAXN=3e4+5,MAXK=105;
struct Edge{
    int to,next;
}edge[MAXN*MAXK];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
    edge[++edge_cnt]=Edge{v,head[u]};
    head[u]=edge_cnt;
}
bitset<MAXN> bt[MAXN];
vector<int> g[MAXN];
namespace KM{
    set<int> s;
    int match[MAXN],vis[MAXN];
    bool dfs(int u,int k){
        if(vis[u]==k)
        return false;
        vis[u]=k;
        for(int i=head[u];i;i=edge[i].next){
            int v=edge[i].to;
            if(!match[v]||dfs(match[v],k))
            return match[v]=u,true;
        }
        return false;
    }
    bool get_pair(int n){
        _rep(u,1,n)
        s.insert(u);
        vector<int> vec;
        _rep(u,1,n){
            bool flag=true;
            for(int v:s){
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                if(!bt[u][v]){
                    match[v]=u;
                    s.erase(v);
                    flag=false;
                    break;
                }
            }
            if(flag)
            vec.push_back(u);
        }
        for(int i:vec){
            mem(head,0);
            edge_cnt=0;
            _rep(u,1,n){
                for(int v:g[i]){
                    if(!bt[u][v])
                    Insert(u,v);
                }
            }
            _rep(v,1,n){
                if(!bt[i][v])
                Insert(i,v);
            }
            if(!dfs(i,i))
            return false;
        }
        return true;
    }
}
int ans[MAXN];
int main()
{
    int n=read_int();
    _rep(u,1,n){
        int k=read_int();
        while(k--){
            int v=read_int();
            g[u].push_back(v);
            bt[u][v]=1;
        }
    }
    if(KM::get_pair(n)){
        _rep(i,1,n)
        ans[KM::match[i]]=i;
        _rep(i,1,n)
        space(ans[i]);
    }
    else
    puts("-1");
    return 0;
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}

D. Diameter Counting

题意

求所有 $n$ 标号树的直径和。

题解1

考虑求树的直径的过程，可以先删去所有叶子结点，得到一棵新树，称为一次操作。然后再不断对新树进
行操作，知道最后剩下一个或两个结点。

此时如果只剩下一个结点，则树的直径为操作次数 $\times 2$。如果剩下两个结点，则树的直径为操作次
数 $\times 2+1$。

考虑通过逆算法反向构建树。设 $f(i,j)$ 表示有 $j$ 个叶子结点的 $i$ 标号树个数，假设上一步操作删除
了 $k(k\ge j)$ 个叶子。

于是问题等价于给这 $k$ 个叶子找一个父结点，使得原来的 $j$ 个叶子结点至少有一个儿子。

同时对于这 $i+k$ 个结点，标号是任意的，对所有 $i+k$ 标号树而言，删去 $k$ 叶子结点得到的树的标
号方式实际上有 ${i+k\choose i}f(i,j)$ 种。

设 $g(i,j,k)$ 表示长度为 $k$ 且每个位置有 $i$ 种可选取值且特定的 $j$ 个值至少出现一次的序列个数，
于是有

$$ f(i+k,k)\gets g(i,j,k)f(i,j){i+k\choose i} $$

接下来考虑求 $g(i,j,k)$，可以考虑序列前 $k-1$ 位，如果此时 $j$ 个特定值都出现了至少一次，则第 $k$
位可以任取，于是有

$$ g(i,j,k)\gets i\times g(i,j,k-1) $$

如果前 $k-1$ 位只有 $j-1$ 个特殊值出现了至少一次，则显然前 $k-1$ 位的取值只有 $i-1$ 种，同时要从
$j$ 个特殊值中确定一个放在第 $k$ 位，有

$$ g(i,j,k)\gets j\times g(i-1,j-1,k-1) $$

最后设 $h(i,j)$ 表示有 $j$ 个叶子的 $i$ 标号树的直径之和。同样假设上一步操作删除了 $k(k\ge j)$ 个叶
子。

考虑原有的树的直径和操作带来的直径 $+2$ 的新贡献，于是有

$$ h(i+k,k)\gets g(i,j,k){i+k\choose i}(h(i,j)+2f(i,j)) $$

另外所有 $h(i+k,k)\gets 2f(i,j)g(i,j,k){i+k\choose i}$ 也可以等价于 $h(i,j)\gets 2f(i,j)$。时空间复杂度
$O\left(n^3\right)$。
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const int MAXN=505;
int mod;
int quick_pow(int n,int k){
    int ans=1;
    while(k){
        if(k&1)ans=1LL*ans*n%mod;
        n=1LL*n*n%mod;
        k>>=1;
    }
    return ans;
}
int frac[MAXN],invf[MAXN];
int C(int n,int m){
    return 1LL*frac[n]*invf[m]%mod*invf[n-m]%mod;
}
int f[MAXN][MAXN],g[MAXN][MAXN][MAXN],h[MAXN][MAXN];
int main()
{
    int n=read_int();
    mod=read_int();
    frac[0]=1;
    _for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%mod;
    invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
    for(int i=MAXN-1;i;i--)
    invf[i-1]=1LL*invf[i]*i%mod;
    g[0][0][0]=1;
    _rep(i,1,n){
        g[i][0][0]=1;
        _rep(k,1,n)
        g[i][0][k]=1LL*g[i][0][k-1]*i%mod;
        _rep(j,1,i)_rep(k,j,n)
        g[i][j][k]=(1LL*g[i][j][k-1]*i+1LL*g[i-1][j-1][k-1]*j)%mod;
    }
    f[1][1]=f[2][2]=1;
    _rep(i,1,n)_rep(j,1,i)_rep(k,max(j,2),n-i)
    f[i+k][k]=(f[i+k][k]+1LL*f[i][j]*g[i][j][k]%mod*C(i+k,i))%mod;
    h[2][2]=1;
    _rep(i,3,n)_rep(j,1,i)
    h[i][j]=2LL*f[i][j]%mod;
    _rep(i,1,n)_rep(j,1,i)_rep(k,max(j,2),n-i)
    h[i+k][k]=(h[i+k][k]+1LL*h[i][j]*g[i][j][k]%mod*C(i+k,i))%mod;
    int ans=0;
    _rep(i,1,n)
    ans=(ans+h[n][i])%mod;
    enter(ans);
    return 0;
}
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题解2

设 $f(i,j)$ 表示深度为 $j$ 的 $i$ 标号树个数，$g(i,j)$ 表示深度不超过 $j$ 的 $i$ 标号树个数。

对一个直径为 $2d+1$ 的 $n$ 标号无根树，可以沿着直径的中心边切开，得到两个深度为 $d$ 的有根树。

设 $1$ 号点所在的有根树大小为 $i$，考虑为他分配 $i-1$ 个编号，于是直径为 $2d+1$ 的 $n$ 标号无根树
个数为

$$ \sum_{i=1}^{n-1}f(i,d)f(n-i,d){n-1\choose i-1} $$

对一个直径为 $2d$ 的 $n$ 标号无根树，可以认为是根节点连接至少两个深度等于 $d-1$ 的有根树。

利用容斥，用深度为 $d$ 的 $n$ 标号有根树个数减去根节点仅连接一个深度为 $d-1$ 的有根树个数的情
况。

根节点仅连接一个深度为 $d-1$ 的有根树可以认为是由一个深度不超过 $d-1$ 的有根树根节点连接一个深
度等于 $d-1$ 的有根树得到的。

于是直径为 $2d$ 的 $n$ 标号无根树个数为

$$ f(n,d)-\sum_{i=1}^{n-1}f(i,d-1)g(n-i,d-1){n\choose i} $$

接下来考虑计算 $f(i,j),g(i,j)$。$f(i,j)$ 难以直接计算，但显然有 $f(i,j)=g(i,j)-g(i,j-1)$，于是只需要计算
$g(i,j)$。

对于深度不超过 $j$ 的 $i$ 标号树个数，可以先分配一个编号给根结点，然后从与根节点相连的子树中找
到编号最小的结点所在的子树。

设子树大小为 $k$，对该子树，他深度不超过 $j-1$，显然有 $g(k,j-1)$ 种。另外需要从剩余 $i-2$ 个编号
再分配 $k-1$ 个编号给子树。

对于余下的 $n-k$ 个点，深度仍然不超过 $j$，但根节点编号已经分配，所以总数为 $\frac {g(i-k,j)}{i-
k}$。于是有

$$ g(i,j)=\sum_{k=1}^{i-1}i{i-2\choose k-1}g(k,j-1)\frac {g(i-k,j)}{i-k} $$

时间复杂度 $O\left(n^3\right)$，空间复杂度 $O\left(n^2\right)$。

const int MAXN=505;
int mod;
int quick_pow(int n,int k){
    int ans=1;
    while(k){
        if(k&1)ans=1LL*ans*n%mod;
        n=1LL*n*n%mod;
        k>>=1;
    }
    return ans;
}
int frac[MAXN],invf[MAXN],inv[MAXN];
int C(int n,int m){
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    return 1LL*frac[n]*invf[m]%mod*invf[n-m]%mod;
}
int f[MAXN][MAXN],g[MAXN][MAXN];
int main()
{
    int n=read_int();
    mod=read_int();
    frac[0]=1;
    _for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%mod;
    invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
    for(int i=MAXN-1;i;i--){
        invf[i-1]=1LL*invf[i]*i%mod;
        inv[i]=1LL*invf[i]*frac[i-1]%mod;
    }
    g[1][0]=1;
    _rep(i,1,n){
        _for(j,1,i)_for(k,1,i)
        g[i][j]=(g[i][j]+1LL*g[k][j-1]*g[i-
k][j]%mod*C(i-2,k-1)%mod*i%mod*inv[i-k])%mod;
        _rep(j,i,n)
        g[i][j]=g[i][i-1];
    }
    f[1][0]=1;
    _rep(i,2,n)_for(j,1,i)
    f[i][j]=(g[i][j]-g[i][j-1])%mod;
    int ans=0;
    _for(i,1,n){
        int cnt=0,d=i/2;
        if(i&1){
            _for(j,1,n)
            cnt=(cnt+1LL*f[j][d]*f[n-j][d]%mod*C(n-1,j-1))%mod;
        }
        else{
            cnt=f[n][d];
            _for(j,1,n)
            cnt=(cnt-1LL*f[j][d-1]*g[n-j][d-1]%mod*C(n,j))%mod;
        }
        ans=(ans+1LL*cnt*i)%mod;
    }
    if(ans<0)ans+=mod;
    enter(ans);
    return 0;
}

G. Game of Death

题意

一个游戏，有 $n$ 名玩家。每个玩家等概率选择一名除自己以为的人进行射击，射击的命中率为 $p$。
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对每个 $k=1\sim n$ ，询问最后存活 $k$ 人的概率。

题解

设 $f(k)$ 表示固定 $k$ 个人的集合，这 $k$ 个人全部死亡的概率。$g(k)$ 表示固定 $k$ 个人的集合，死
亡的人是这个集合的子集的概率。

首先考虑计算 $g(k)$，事实上可以把所有人分成两种人，一种是在这个 $k$ 人集合中的人，记为 $A$ 类人。
另一种记为 $B$ 类人。

于是只需要保证不杀死 $B$ 类人即可。于是对 $A$ 类人，这个概率为 $1-\frac {p(n-k)}{n-1}$。而对于
$B$ 类人，这个概率为 $1-\frac {p(n-1-k)}{n-1}$。

于是有

$$ g(k)=\left(1-\frac {p(n-k)}{n-1}\right)^k\left(1-\frac {p(n-1-k)}{n-1}\right)^{n-k} $$

同时有 $g(k)=\sum_{i=0}^k {k\choose i}f(i)$，根据二项式反演，得 $$ f(k)=\sum_{i=0}^k (-1)^{k-
i}{k\choose i}g(i)=k!\sum_{i=0}^k\frac{(-1)^{k-i}}{(k-i)!}\frac{g(i)}{i!} $$ 卷积计算即可，最终
$k$ 人死亡的答案为 ${n\choose k}f(k)$。时间复杂度 $O(n\log n)$。

const int MAXN=3e5+5,mod=998244353;
int quick_pow(int n,int k){
    int ans=1;
    while(k){
        if(k&1)ans=1LL*ans*n%mod;
        n=1LL*n*n%mod;
        k>>=1;
    }
    return ans;
}
namespace Poly{
    const int G=3,Mod=998244353;
    int rev[MAXN<<2],Wn[30][2];
    void init(){
        int m=Mod-1,lg2=0;
        while(m%2==0)m>>=1,lg2++;
        Wn[lg2][1]=quick_pow(G,m);
        Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
        while(lg2){
            m<<=1,lg2--;
            Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
            Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
        }
    }
    int build(int k){
        int n,pos=0;
        while((1<<pos)<=k)pos++;
        n=1<<pos;
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        _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
        return n;
    }
    void NTT(int *f,int n,bool type){
        _for(i,0,n)if(i<rev[i])
        swap(f[i],f[rev[i]]);
        int t1,t2;
        for(int i=1,lg2=0;i<n;i<<=1,lg2++){
            int w=Wn[lg2+1][type];
            for(int j=0;j<n;j+=(i<<1)){
                int cur=1;
                _for(k,j,j+i){
                    t1=f[k],t2=1LL*cur*f[k+i]%Mod;
                    f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
                    cur=1LL*cur*w%Mod;
                }
            }
        }
        if(!type){
            int div=quick_pow(n,Mod-2);
            _for(i,0,n)f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
        }
    }
    void mul(int *f,int _n,int *g,int _m){
        int n=build(_n+_m-2);
        _for(i,_n,n)f[i]=0;_for(i,_m,n)g[i]=0;
        NTT(f,n,1);NTT(g,n,1);
        _for(i,0,n)f[i]=1LL*f[i]*g[i]%Mod;
        NTT(f,n,0);
    }
}
int frac[MAXN],invf[MAXN];
int C(int n,int m){
    return 1LL*frac[n]*invf[m]%mod*invf[n-m]%mod;
}
int f[MAXN<<2],g[MAXN<<2];
int main()
{
    Poly::init();
    int n=read_int(),a=read_int(),b=read_int();
    int p=1LL*a*quick_pow(b,mod-2)%mod;
    frac[0]=1;
    _for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%mod;
    invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
    for(int i=MAXN-1;i;i--)
    invf[i-1]=1LL*invf[i]*i%mod;
    int div=quick_pow(n-1,mod-2);
    _rep(i,0,n){
        LL t1=1-1LL*p*(n-i)%mod*div;
        LL t2=1-1LL*p*(n-1-i)%mod*div;
        g[i]=1LL*quick_pow(t1%mod,i)*quick_pow(t2%mod,n-i)%mod;
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        g[i]=1LL*g[i]*invf[i]%mod;
        f[i]=(i&1)?-invf[i]:invf[i];
    }
    Poly::mul(f,n+1,g,n+1);
    _rep(i,0,n)
    f[i]=1LL*f[i]*frac[i]%mod*C(n,i)%mod;
    _rep(i,0,n)
    enter(f[n-i]);
    return 0;
}

J. Illuminations

题意

给一个凸多边形，和凸多边形外侧若干个点，每个点作为一盏灯，向四面八方发出光线，让用最少的点照
亮平面除凸包内部外所有区域，如果不存在方案输出 $-1$ 。

题解

这题可以分成两个部分，一个是求凸包切线部分，一个是求环区间最小覆盖部分。

我们注意到，一个点能照亮的最大区域是这个点对于这个凸包求左右两条切线，然后点亮所有区域的等价
条件是所有边都被一个点的两条切线夹起来过，求切线就是一个二分的板子，然后这个问题就转化为环形
结构内给若干个线段（可以跨过原点），求最少的线段的数量，覆盖 $1$ 到 $n$ 的所有点。

关于求环区间最小覆盖部分，首先肯定是断环成链，然后枚举 $i=1\sim n$ 区间 $[i,i+n)$ 的最小线段覆
盖，但这是 $O\left(n^2\right)$ 的，有以下几种解法。

第一种，本人最初过题思路，设 $\text{dp}(l,r)$ 表示区间 $[l,r]$ 的最小线段覆盖。

固定 $l$，显然 $\text{dp}(l,r)$ 是分段的。然后对给定 $l$，显然策略为找到覆盖他的线段中的最大的右端
点 $k$。

于是有

$$ \text{dp}(l,i) \begin{cases} 1, &i\le k\\ \text{dp}(k+1,i)+1, &i\gt k \end{cases} $$

于是可以可持久化线段树维护每个 $\text{dp}(i,\ast)$ 数组的所有分段点，然后 $O(n\log n)$ 查询
$\text{dp}(i,i+n-1)(i=1\sim n)$，得到答案。

const double eps=1e-11;
const double inf=1e20;
const double pi=acos(-1);
const int maxp=300020;
int n,m;
struct xd {
    int id,l,r;
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} xx[maxp];
int xxs,maxv;
int sgn(double x) {
    if(fabs(x)<eps) return 0;
    if(x<0) return -1;
    return 1;
}
 
struct Point {
    double x,y;
    Point() {}
    Point(double _x,double _y) {
        x = _x;
        y = _y;
    }
    void input() {
        scanf("%lf%lf",&x,&y);
    }
    void output() {
        printf("%.2f %.2f\n",x,y);
    }
    bool operator == (Point b)const {
        return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
    }
    bool operator < (Point b)const {
        return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
    }
    Point operator -(const Point &b)const {
        return Point(x-b.x,y-b.y);
    }
    //叉积
    double operator ^(const Point &b)const {
        return x*b.y-y*b.x;
    }
    //点积
    double operator *(const Point &b)const {
        return x*b.x + y*b.y;
    }
    //返回长度
    double len() {
        return hypot(x,y);//库函数
    }
    //返回长度的平方
    double len2() {
        return x*x + y*y;
    }
    //返回两点的距离
    double distance(Point p) {
        return hypot(x-p.x,y-p.y);
    }
    Point operator +(const Point &b)const {
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        return Point(x+b.x,y+b.y);
    }
    Point operator *(const double &k)const {
        return Point(x*k,y*k);
    }
    Point operator /(const double &k)const {
        return Point(x/k,y/k);
    }
    //计算 pa 和 pb 的夹角
    //就是求这个点看 a,b 所成的夹角
    //测试 LightOJ1203
    double rad(Point a,Point b) {
        Point p = *this;
        return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));
    }
    //计算 pa 和 pb 的有向角
    double tmprad(Point a,Point b) {
        Point p = *this;
        return atan2(((a-p)^(b-p)),(a-p)*(b-p));
    }
    //化为长度为 r 的向量
    Point trunc(double r) {
        double l = len();
        if(!sgn(l))return *this;
        r /= l;
        return Point(x*r,y*r);
    }
    //逆时针旋转 90 度
    Point rotleft() {
        return Point(-y,x);
    }
    //顺时针旋转 90 度
    Point rotright() {
        return Point(y,-x);
    }
    //绕着 p 点逆时针旋转 angle
    Point rotate(Point p,double angle) {
        Point v = (*this)-p;
        double c = cos(angle), s = sin(angle);
        return Point(p.x + v.x*c-v.y*s,p.y + v.x*s + v.y*c);
    }
};
 
struct Line {
    Point s,e;
    Line() {
 
    }
    Line(Point _s,Point _e) {
        s=_s;
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        e=_e;
    }
 
};
struct polygon {
    int n;
    Point p[maxp];
    Line l[maxp];
    void input(int _n) {
        n = _n;
        for(int i = 0; i < n; i++)
            p[i].input();
    }
    void add(Point q) {
        p[n++] = q;
    }
    void getline() {
        for(int i = 0; i < n; i++) {
            l[i] = Line(p[i],p[(i+1)%n]);
        }
    }
    struct cmp {
        Point p;
        cmp(const Point &p0) {
            p = p0;
        }
        bool operator()(const Point &aa,const Point &bb) {
            Point a = aa, b = bb;
            int d = sgn((a-p)^(b-p));
            if(d == 0) {
                return sgn(a.distance(p)-b.distance(p)) < 0;
            }
            return d > 0;
        }
    };
    //进行极角排序
    //首先需要找到最左下角的点
    //需要重载号好 Point 的 < 操作符 (min 函数要用)
    void norm() {
        Point mi = p[0];
        for(int i = 1; i < n; i++)mi = min(mi,p[i]);
        sort(p,p+n,cmp(mi));
    }
    //得到凸包的另外一种方法
    //测试 LightOJ1203 LightOJ1239
    void Graham(polygon &convex) {
        norm();
        int &top = convex.n;
        top = 0;
        if(n == 1) {
            top = 1;
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            convex.p[0] = p[0];
            return;
        }
        if(n == 2) {
            top = 2;
            convex.p[0] = p[0];
            convex.p[1] = p[1];
            if(convex.p[0] == convex.p[1])top--;
            return;
        }
        convex.p[0] = p[0];
        convex.p[1] = p[1];
        top = 2;
        for(int i = 2; i < n; i++) {
            while( top > 1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-
convex.p[top-2])) <= 0 )top--;
            convex.p[top++] = p[i];
        }
        if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特 判
    }
 
    //下面是过凸包外一点 求凸包左右切点的板子
    int getl(int l,int r,Point po) {
        int ans=l,mid;
        l++;
        while(l<=r) {
            mid=l+r>>1;
            if(sgn((p[mid]-po)^(p[(mid-1+n)%n]-p[mid]))<=0) {
                ans=mid;
                l=mid+1;
            } else r=mid-1;
        }
        return ans;
    }
 
    int getr(int l,int r,Point po) {
        int ans=r,mid;
        r--;
        while(l<=r) {
            mid=l+r>>1;
            if(sgn((p[mid]-po)^(p[(mid+1)%n]-p[mid]))>=0) {
                ans=mid;
                r=mid-1;
            } else l=mid+1;
        }
        return ans;
    }
 
    void work(Point po,int id) {
        int pos=0;
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        if(sgn(po.x)>0) {
            int l=1,r=n-1,mid;
            while(l<=r) {
                mid=l+r>>1;
                if(sgn(p[mid]^po)>=0) {
                    pos=mid;
                    l=mid+1;
                } else {
                    r=mid-1;
                }
            }
        } else if(sgn(po.y)>0) {
            pos=n-1;
        }
        int l,r;
        if(sgn(po.x)>0) {
            l=getl(0,pos,po);
            r=getr(pos,n,po);
        } else {
            l=getl(maxv,n,po);
            r=getr(0,maxv,po);
        }
        if(r==0) r=n;
        xx[++xxs]= {id,l+1,r};
    }
    //到此结束
} PO,po,po1,PPO;
 
namespace Tree {
    const int MAXN=4e5+5;
    int lef[MAXN<<2],rig[MAXN<<2];
    pair<int,int> s[MAXN<<2],lazy[MAXN<<2];
    void build(int k,int L,int R) {
        lef[k]=L,rig[k]=R;
        if(lef[k]==rig[k])
            return;
        int M=L+R>>1;
        build(k<<1,L,M);
        build(k<<1|1,M+1,R);
    }
    void push_tag(int k,pair<int,int> v) {
        s[k]=max(s[k],v);
        lazy[k]=max(lazy[k],v);
    }
    void push_up(int k) {
        s[k]=max(s[k<<1],s[k<<1|1]);
    }
    void push_down(int k) {
        if(lazy[k].first) {
            push_tag(k<<1,lazy[k]);
            push_tag(k<<1|1,lazy[k]);
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            lazy[k]=make_pair(0,0);
        }
    }
    void update(int k,int L,int R,pair<int,int> v) {
        if(L<=lef[k]&&rig[k]<=R) {
            push_tag(k,v);
            return;
        }
        push_down(k);
        int mid=lef[k]+rig[k]>>1;
        if(mid>=L)
            update(k<<1,L,R,v);
        if(mid<R)
            update(k<<1|1,L,R,v);
        push_up(k);
    }
    pair<int,int> query(int k,int pos) {
        if(lef[k]==rig[k])
            return s[k];
        push_down(k);
        int mid=lef[k]+rig[k]>>1;
        if(mid>=pos)
            return query(k<<1,pos);
        else
            return query(k<<1|1,pos);
    }
}
namespace JXM {
    const int MAXN=4e5+5;
    struct Node {
        int s,v,lch,rch;
    } node[MAXN*40];
    int root[MAXN],node_cnt;
    void update(int &k,int p,int vl,int vr,int pos,int v) {
        node[k=++node_cnt]=node[p];
        node[k].s++;
        if(vl==vr) {
            node[k].v=v;
            return;
        }
        int vm=vl+vr>>1;
        if(vm>=pos)
            update(node[k].lch,node[p].lch,vl,vm,pos,v);
        else
            update(node[k].rch,node[p].rch,vm+1,vr,pos,v);
    }
    int query_max(int k,int vl,int vr) {
        if(vl==vr)return vl;
        int vm=vl+vr>>1;
        if(node[k].rch)
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            return query_max(node[k].rch,vm+1,vr);
        else
            return query_max(node[k].lch,vl,vm);
    }
    int query(int k,int vl,int vr,int pos) {
        if(!k)return 0;
        if(vl==vr)return 1;
        int vm=vl+vr>>1;
        if(vm>=pos)
            return query(node[k].lch,vl,vm,pos);
        else
            return node[node[k].lch].s+query(node[k].rch,vm+1,vr,pos);
    }
    vector<pair<int,int> > res;
    void dfs(int k,int vl,int vr) {
        if(!k)return;
        if(vl==vr) {
            res.push_back(make_pair(vl,node[k].v));
            return;
        }
        int vm=vl+vr>>1;
        dfs(node[k].lch,vl,vm);
        dfs(node[k].rch,vm+1,vr);
    }
    void pt(int v) {
        enter(v);
        dfs(root[v],1,6);
        for(pair<int,int> p:res) {
            space(p.second);
            enter(p.first);
        }
        puts("");
        res.clear();
    }
    void solve() {
        int m=xxs;
        int n=PO.n,n2=PO.n<<1;
        Tree::build(1,1,n2);
        _rep(i,1,m) {
            if(xx[i].r<xx[i].l)xx[i].r+=n;
            Tree::update(1,xx[i].l,xx[i].r,make_pair(xx[i].r,xx[i].id));
        }
        int ans=MAXN;
        for(int i=n2; i; i--) {
            pair<int,int> t=Tree::query(1,i);
            if(t.first!=0) {
                update(root[i],root[t.first+1],1,n2,t.first,t.second);
                if(i<=n&&query_max(root[i],1,n2)>=i+n-1)
                    ans=min(ans,query(root[i],1,n2,i+n-2)+1);
            }
        }
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        if(ans==MAXN) {
            puts("-1");
            return;
        }
        enter(ans);
        _rep(i,1,n) {
            if(root[i]&&query_max(root[i],1,n2)>=i+n-1) {
                if(ans==query(root[i],1,n2,i+n-2)+1) {
                    dfs(root[i],1,n2);
                    for(pair<int,int> p:res) {
                        space(p.second);
                        if(p.first>=i+n-1)
                            break;
                    }
                    return;
                }
            }
        }
    }
}
 
int main() {
    cin>>n>>m;
    PPO.n=PO.n=n,po.n=m;
    for(int i=0; i<n; i++) {
        scanf("%lf %lf",&PPO.p[i].x,&PPO.p[i].y);
    }
    PPO.Graham(PO);
    Point pp=PO.p[0];
    for(int i=0; i<n; i++) PO.p[i]=PO.p[i]-pp;
    for(int i=0; i<n; i++) if(sgn(PO.p[i].x-PO.p[maxv].x)>=0) maxv=i;
    for(int i=0; i<m; i++) {
        scanf("%lf %lf",&po.p[i].x,&po.p[i].y);
        po.p[i]=po.p[i]-pp;
    }
    for(int i=0; i<m; i++) PO.work(po.p[i],i+1);
    JXM::solve();
    return 0;
}

第二种，由于对给定 $l$，最优策略为找到覆盖他的线段中的最大的右端点 $r$，然后跳到 $r+1$，于是每个
状态的后继都是唯一的。

因此如果对每个 $l$，建边 $l\to r+1$，可以得到一棵树。

考虑树上倍增，可以 $O(n\log n)$ 查询每个结点 $i=1\sim n$ 跳到不小于 $i+n-1$ 的祖先的最小步数得
到答案。

另外这也可以通过 $\text{dfs}$ 维护根到当前结点的路径然后二分来实现。

第三种，首先淘汰掉被另一条线段完全包含的线段，然后选取余下的线段中最短的线段的每个位置作为起
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点暴力跳查询答案。

设最短的线段长度为 $L$，则每次跳的长度不小于 $L$，于是最多跳 $O(\frac nL)$ 次，于是总复杂度
$O(L\times \frac nL)\sim O(n)$。

关于淘汰被另一条线段完全包含的线段，也可以利用桶排等技巧 $O(n)$ 实现。

关于为什么选最短的线段的每个位置作为起点可以保证得到最优解，本人无法证明。

const double eps=1e-11;
const double inf=1e20;
const double pi=acos(-1);
const int maxp=300020;
int n,m;
struct xd {
    int id,l,r;
} xx[maxp];
int xxs,maxv;
int sgn(double x) {
    if(fabs(x)<eps) return 0;
    if(x<0) return -1;
    return 1;
}
 
struct Point {
    double x,y;
    Point() {}
    Point(double _x,double _y) {
        x = _x;
        y = _y;
    }
    void input() {
        scanf("%lf%lf",&x,&y);
    }
    void output() {
        printf("%.2f %.2f\n",x,y);
    }
    bool operator == (Point b)const {
        return sgn(x-b.x) == 0 && sgn(y-b.y) == 0;
    }
    bool operator < (Point b)const {
        return sgn(x-b.x)== 0?sgn(y-b.y)<0:x<b.x;
    }
    Point operator -(const Point &b)const {
        return Point(x-b.x,y-b.y);
    }
    //叉积
    double operator ^(const Point &b)const {
        return x*b.y-y*b.x;
    }
    //点积
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    double operator *(const Point &b)const {
        return x*b.x + y*b.y;
    }
    //返回长度
    double len() {
        return hypot(x,y);//库函数
    }
    //返回长度的平方
    double len2() {
        return x*x + y*y;
    }
    //返回两点的距离
    double distance(Point p) {
        return hypot(x-p.x,y-p.y);
    }
    Point operator +(const Point &b)const {
        return Point(x+b.x,y+b.y);
    }
    Point operator *(const double &k)const {
        return Point(x*k,y*k);
    }
    Point operator /(const double &k)const {
        return Point(x/k,y/k);
    }
    //计算 pa 和 pb 的夹角
    //就是求这个点看 a,b 所成的夹角
    //测试 LightOJ1203
    double rad(Point a,Point b) {
        Point p = *this;
        return fabs(atan2(fabs((a-p)^(b-p)),(a-p)*(b-p)));
    }
    //计算 pa 和 pb 的有向角
    double tmprad(Point a,Point b) {
        Point p = *this;
        return atan2(((a-p)^(b-p)),(a-p)*(b-p));
    }
    //化为长度为 r 的向量
    Point trunc(double r) {
        double l = len();
        if(!sgn(l))return *this;
        r /= l;
        return Point(x*r,y*r);
    }
    //逆时针旋转 90 度
    Point rotleft() {
        return Point(-y,x);
    }
    //顺时针旋转 90 度
    Point rotright() {
        return Point(y,-x);
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    }
    //绕着 p 点逆时针旋转 angle
    Point rotate(Point p,double angle) {
        Point v = (*this)-p;
        double c = cos(angle), s = sin(angle);
        return Point(p.x + v.x*c-v.y*s,p.y + v.x*s + v.y*c);
    }
};
 
struct Line {
    Point s,e;
    Line() {
 
    }
    Line(Point _s,Point _e) {
        s=_s;
        e=_e;
    }
 
};
struct polygon {
    int n;
    Point p[maxp];
    Line l[maxp];
    void input(int _n) {
        n = _n;
        for(int i = 0; i < n; i++)
            p[i].input();
    }
    void add(Point q) {
        p[n++] = q;
    }
    void getline() {
        for(int i = 0; i < n; i++) {
            l[i] = Line(p[i],p[(i+1)%n]);
        }
    }
    struct cmp {
        Point p;
        cmp(const Point &p0) {
            p = p0;
        }
        bool operator()(const Point &aa,const Point &bb) {
            Point a = aa, b = bb;
            int d = sgn((a-p)^(b-p));
            if(d == 0) {
                return sgn(a.distance(p)-b.distance(p)) < 0;
            }
            return d > 0;
        }
    };
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    //进行极角排序
    //首先需要找到最左下角的点
    //需要重载号好 Point 的 < 操作符 (min 函数要用)
    void norm() {
        Point mi = p[0];
        for(int i = 1; i < n; i++)mi = min(mi,p[i]);
        sort(p,p+n,cmp(mi));
    }
    //得到凸包的另外一种方法
    //测试 LightOJ1203 LightOJ1239
    void Graham(polygon &convex) {
        norm();
        int &top = convex.n;
        top = 0;
        if(n == 1) {
            top = 1;
            convex.p[0] = p[0];
            return;
        }
        if(n == 2) {
            top = 2;
            convex.p[0] = p[0];
            convex.p[1] = p[1];
            if(convex.p[0] == convex.p[1])top--;
            return;
        }
        convex.p[0] = p[0];
        convex.p[1] = p[1];
        top = 2;
        for(int i = 2; i < n; i++) {
            while( top > 1 && sgn((convex.p[top-1]-convex.p[top-2])^(p[i]-
convex.p[top-2])) <= 0 )top--;
            convex.p[top++] = p[i];
        }
        if(convex.n == 2 && (convex.p[0] == convex.p[1]))convex.n--;//特 判
    }
 
    //下面是过凸包外一点 求凸包左右切点的板子
    int getl(int l,int r,Point po) {
        int ans=l,mid;
        l++;
        while(l<=r) {
            mid=l+r>>1;
            if(sgn((p[mid]-po)^(p[(mid-1+n)%n]-p[mid]))<=0) {
                ans=mid;
                l=mid+1;
            } else r=mid-1;
        }
        return ans;
    }
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    int getr(int l,int r,Point po) {
        int ans=r,mid;
        r--;
        while(l<=r) {
            mid=l+r>>1;
            if(sgn((p[mid]-po)^(p[(mid+1)%n]-p[mid]))>=0) {
                ans=mid;
                r=mid-1;
            } else l=mid+1;
        }
        return ans;
    }
 
    void work(Point po,int id) {
        int pos=0;
        if(sgn(po.x)>0) {
            int l=1,r=n-1,mid;
            while(l<=r) {
                mid=l+r>>1;
                if(sgn(p[mid]^po)>=0) {
                    pos=mid;
                    l=mid+1;
                } else {
                    r=mid-1;
                }
            }
        } else if(sgn(po.y)>0) {
            pos=n-1;
        }
        int l,r;
        if(sgn(po.x)>0) {
            l=getl(0,pos,po);
            r=getr(pos,n,po);
        } else {
            l=getl(maxv,n,po);
            r=getr(0,maxv,po);
        }
        if(r==0) r=n;
        xx[++xxs]= {id,l+1,r};
    }
    //到此结束
} PO,po,po1,PPO;
namespace JXM {
    const int MAXN=4e5+5;
    vector<xd> c[MAXN];
    pair<int,int> dp[MAXN];
    void solve() {
        int n=PO.n,n2=PO.n<<1;
        int m=xxs;
        _rep(i,1,m){
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            if(xx[i].r<xx[i].l)xx[i].r+=n;
            c[xx[i].r-xx[i].l].push_back(xx[i]);
        }
        m=0;
        _for(i,0,MAXN){
            for(xd t:c[i])
            xx[++m]=t;
        }
        _rep(i,1,m){
//            space(i);space(xx[i].l);enter(xx[i].r);
            dp[xx[i].l]=make_pair(xx[i].r,i);
        }
        _rep(i,1,n2)
        dp[i]=max(dp[i],dp[i-1]);
        _rep(i,1,n){
            pair<int,int> t1=dp[i],t2=dp[i+n];
            dp[i]=max(t1,make_pair(t2.first-n,t2.second));
            dp[i+n]=max(make_pair(t1.first+n,t1.second),t2);
        }
        int pos=0;
        _rep(i,1,n){
            if(dp[i].first<i){
                puts("-1");
                return;
            }
            if(!pos)
            pos=dp[i].second;
            else if(xx[pos].r-xx[pos].l>xx[dp[i].second].r-
xx[dp[i].second].l)
            pos=dp[i].second;
        }
        int ans=MAXN;
        _rep(i,xx[pos].l,xx[pos].r){
            int st=(i-1)%n+1,pos2=st,cnt=0;
            while(pos2<st+n){
                pos2=dp[pos2].first+1;
                cnt++;
            }
            ans=min(ans,cnt);
        }
        enter(ans);
        _rep(i,xx[pos].l,xx[pos].r){
            int st=(i-1)%n+1,pos2=st,cnt=0;
            while(pos2<st+n){
                pos2=dp[pos2].first+1;
                cnt++;
            }
            if(ans==cnt){
                int pos2=st;
                while(pos2<st+n){
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                    space(xx[dp[pos2].second].id);
                    pos2=dp[pos2].first+1;
                }
                return;
            }
        }
    }
}
 
int main() {
    cin>>n>>m;
    PPO.n=PO.n=n,po.n=m;
    for(int i=0; i<n; i++) {
        scanf("%lf %lf",&PPO.p[i].x,&PPO.p[i].y);
    }
    PPO.Graham(PO);
    Point pp=PO.p[0];
    for(int i=0; i<n; i++) PO.p[i]=PO.p[i]-pp;
    for(int i=0; i<n; i++) if(sgn(PO.p[i].x-PO.p[maxv].x)>=0) maxv=i;
    for(int i=0; i<m; i++) {
        scanf("%lf %lf",&po.p[i].x,&po.p[i].y);
        po.p[i]=po.p[i]-pp;
    }
    for(int i=0; i<m; i++) PO.work(po.p[i],i+1);
    JXM::solve();
    return 0;
}

K. Walking

题意

给定一个 $n\times m$ 的网格和初始点 $(a,b)$，求从初始点出发移动 $t$ 步且始终不出界的情况下的所
有走法。

题解

显然横轴坐标是独立的，可以分开考虑。

设 $f(s,n,a)$ 表示从一维坐标轴从 $a$ 点出发走 $s$ 步且始终处于 $[1,n]$ 范围内的情况下的所有走法。
于是答案为

$$ \sum_{i=0}^t {t\choose i}f(i,n,a)f(t-i,m,b) $$

接下来考虑如何计算 $f(s,n,a)(s\in [0,t])$，$f(s,m,b)$ 的计算方式类同。

方案一：设 $\text{dp}(i,j)$ 表示走 $i$ 步最后位于 $j$ 点且始终为出界的方案数，不难得到一个 $O(nt)$
的暴力解法。
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方案二：不难发现，有

$$ \begin{equation}\begin{split} f(s,n,a)&=\sum_{i=1}^n \text{dp}(s,i) \\
&=\text{dp}(s-1,1)+\sum_{i=2}^{n-1} (\text{dp}(s-1,i-1)+\text{dp}(s-1,i+1))+\text{dp}(s-1,n)\\ &
=2f(s-1,n,a)-\text{dp}(s-1,1)-\text{dp}(s-1,n) \end{split}\end{equation} $$ 于是问题转化为计算
$\text{dp}(s,1),\text{dp}(s,n)$。

对每个移动方案，定义非法序列，每当点进入 $(-\infty,0)$ 时非法序列末尾加上 $L$，每当点进入
$(n,+\infty)$ 时非法序列末尾加上 $R$。

对于 $\text{dp}(s,1)$，我们需要获得所有非法序列为空串的移动方案。设 $h(a,b,s)$ 表示从 $a$ 移动
$s$ 步到达 $b$ 的方案数。

显然根据 $a,b,s$ 奇偶性以及预处理组合数可以 $O(1)$ 计算 $h(a,b,s)$。

然后总移动方案为 $h(a,1,s)$。利用容斥，首先我们减去非法序列为 L+.* 和 R+.* (非法序列均用正则表
达式表示)的移动方案。

设 $l(x)=-x,r(x)=2(n+1)-x$。根据简单组合数学知识，不难发现 L+.* 代表的方案为 $h(a,l(1),s)$，R+.*
代表的方案为 $h(a,r(1),s)$。

接下来我们需要补上减去非法序列为 L+R+.* 和 R+L+.* 的移动方案，分别为
$h(a,r(l(1)),s),h(a,l(r(1)),s)$。依次类推，有

$$ \text{dp}(s,1)=h(a,1,s)-h(a,l(1),s)-h(a,r(1),s)+h(a,r(l(1)),s)+h(a,l(r(1)),s)-h(a,l(r(l(1))),s)-
h(a,r(l(r(1))),s)+\cdots $$

由于 $r(l(x))=2(n+1)+x$，且当 $\text{abs}(a-x)\gt s$ 时一定有 $h(a,x,s)=0$，所以上述容斥最多迭代
$O(\frac sn)$ 次。

于是方案二的总时间复杂度为 $O\left(\sum_{i=1}^t \frac in\right)\sim O\left(\frac {t^2}n\right)$。

考虑根号分治，当 $n\lt \sqrt t$ 时采用方案一，否则采用方案二。总时间复杂度 $O(t\sqrt t)$。

const int MAXN=5e5+5,MAXM=800,mod=998244353;
int quick_pow(int n,int k){
    int ans=1;
    while(k){
        if(k&1)ans=1LL*ans*n%mod;
        n=1LL*n*n%mod;
        k>>=1;
    }
    return ans;
}
int frac[MAXN],invf[MAXN];
int C(int n,int m){
    return 1LL*frac[n]*invf[m]%mod*invf[n-m]%mod;
}
void init(){
    frac[0]=1;
    _for(i,1,MAXN)frac[i]=1LL*frac[i-1]*i%mod;
    invf[MAXN-1]=quick_pow(frac[MAXN-1],mod-2);
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    for(int i=MAXN-1;i;i--)
    invf[i-1]=1LL*invf[i]*i%mod;
}
int ans1[MAXN],ans2[MAXN];
int dp[2][MAXM];
void solve1(int s,int n,int a,int *ans){
    int pos=0;
    mem(dp[pos],0);
    dp[pos][a]=1;
    ans[0]=1;
    _rep(i,1,s){
        pos=!pos;
        mem(dp[pos],0);
        _rep(j,1,n){
            dp[pos][j]=(dp[!pos][j-1]+dp[!pos][j+1])%mod;
            ans[i]=(ans[i]+dp[pos][j])%mod;
        }
    }
}
int cal(int s,int n,int a,int pos){
    int pos1=pos,pos2=pos,ans=0,d=abs(pos-a);
    if(d<=s&&(s-d)%2==0)
    ans=C(s,(s+d)/2);
    for(int j=1;;j++){
        if(j&1){
            pos1=-pos1;
            pos2=2*(n+1)-pos2;
        }
        else{
            pos1=2*(n+1)-pos1;
            pos2=-pos2;
        }
        int d1=abs(pos1-a),d2=abs(pos2-a),det=0;
        if(d1>s&&d2>s)break;
        if(d1<=s&&(s-d1)%2==0)
        det=(det+C(s,(s+d1)/2));
        if(d2<=s&&(s-d2)%2==0)
        det=(det+C(s,(s+d2)/2))%mod;
        if(j&1)
        ans=(ans+mod-det)%mod;
        else
        ans=(ans+det)%mod;
    }
    return ans;
}
void solve2(int s,int n,int a,int *ans){
    ans[0]=1;
    _rep(i,1,s)
    ans[i]=(2LL*ans[i-1]+mod-cal(i-1,n,a,1)+mod-cal(i-1,n,a,n))%mod;
}
void solve(int s,int n,int a,int *ans){
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    if(1LL*n*n<s)
    solve1(s,n,a,ans);
    else
    solve2(s,n,a,ans);
}
int main()
{
    init();
    int t=read_int(),n=read_int(),m=read_int(),a=read_int(),b=read_int();
    solve(t,n,a,ans1);
    solve(t,m,b,ans2);
    int ans=0;
    _rep(i,0,t)
    ans=(ans+1LL*C(t,i)*ans1[i]%mod*ans2[t-i])%mod;
    enter(ans);
    return 0;
}
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