
2026/01/14 03:31 1/4 题解

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

题解

B. Cannon

题意

给定上下两行格点的数量，规定一个操作是对于其中一行，选择一个点，模仿中国象棋里的炮的攻击规则，
中间有且只有一个点，跳到另一个点，然后消失一个点，问所有这种事件的发生数，分有限制和没有限制。
有限制指对第一行操作若干步（可以是 0 ），然后对第二行操作，之后不能退回到第一行。

题解

显然如果一行有 n 个点，操作一次的方案数是 $2×(n-2)$ 。之后剩余 $n-1$ 个点，方案数是 $2×(n-3)$ 。
所以可以知道 n 个炮操作 m 次的方案数是 $2^{m}{\frac {(n-2)!} {(n-2-m)!}}$ ，为了方便起见我
们把 $x-=2,y-=2$ 。于是转变为求$2^{k} \sum {\frac {k!} {i!(k-i)!}} {\frac {n!} {(n-i)!}} {\frac {m!}
{(m-(k-i))!}}$ 和 $2^{k} \sum {\frac {n!} {(n-i)!}} {\frac {m!} {(m-(k-i))!}}$ 两个子问题。

对于第一个子问题，我们发现可以把 $k!$ 提出来，之后对于里面的式子，可以变成两个组合数的乘积，
再利用组合数的常用结论，可以推出其等于 $2^{k}k!C(n+m,k)$ ，这个式子可以通过预处理 2 的方幂，
阶乘以及阶乘的逆来 $O(1)$ 求得，于是总共复杂度 $O(n+m)$ 。

对于第二个子问题， $2^{k} \sum {\frac {n!} {(n-i)!}} {\frac {m!} {(m-(k-i))!}} = 2^{k} \sum {\frac
{n!m!} {(n+m-k)!}} {\frac {(n+m-k)!} {(n-i)!(m-(k-i))!}} = 2^{k} {\frac {n!m!} {(n+m-k)!}}
\sum_{i=n-k}^{n} C(n+m-k,i)$

虽然没有直接的结论，但是这个可以用步移算法来解决。

设 $S(n,m) = \sum_{i=0}^{m} C(n,i)$ ，

则 $S(n,m+1) = S(n,m) + C(n,m+1),S(n,m-1) = S(n,m) - C(n,m),S(n+1,m) = 2S(n,m) - C(n,m)$

于是相当于一个前缀和的问题，然后我们已知的是 0 步的方法是 1 ，然后通过枚举 k 我们发现， 减
数之间存在关系可以用上述关系式求出下一项的减数，被减数也一样，于是复杂度也是 $O(n+m)$ 。

总结：最难的还是推式子，其次是想起来步移算法（可能只有我会想不起来⋯）。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;

const ll maxn=1e7+10;
const ll mod=1e9+9;
ll x,y;
ll jc[maxn],inv[maxn],ec[maxn];

ll C(int n,int m) {
 if(n<m||m<0) return 0;

https://ac.nowcoder.com/acm/contest/11253

Last
update:
2021/07/20
15:23

2020-2021:teams:legal_string:组队训练
比赛记录:contest4 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest4&rev=1626765837

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

 return jc[n]*inv[m]%mod*inv[n-m]%mod;
}
int main() {
 scanf("%lld %lld",&x,&y);
 inv[0]=jc[1]=inv[1]=jc[0]=ec[0]=1;
 ec[1]=2;
 for(int i=2;i<=x+y;i++) {
 ec[i]=ec[i-1]*2%mod;
 jc[i]=jc[i-1]*i%mod;
 inv[i]=(mod-mod/i)*inv[mod%i]%mod;
 }
 for(int i=2;i<=x+y;i++) inv[i]=inv[i-1]*inv[i]%mod;
 ll ans1=0;
 for(int i=0;i<=x+y-4;i++) {
 ans1=ans1^(ec[i]*jc[i]%mod*C(x+y-4,i)%mod);
 }
 printf("%lld ",ans1);
 ll tmp1=1,tmp2=0;
 ll ans2=0;
 x-=2;y-=2;
 ll tt=jc[x]*jc[y]%mod;
 for(int i=0;i<=x+y;i++) {
 ans2=ans2^((ec[x+y-i]*tt%mod*inv[i]%mod*(tmp1-tmp2)%mod+mod)%mod);
 tmp1=(tmp1*2%mod-C(i,x)+mod)%mod;
 //tmp2=(tmp2*2%mod-C(i,x-i-1)*2%mod-C(i,x-i-2)+mod*2)%mod;
 tmp2=(tmp2*2%mod+C(i,i-y))%mod;
 }
 printf("%lld\n",ans2);
 return 0;
}

G. League of Legends

题意

给定 n 条线段，要求将线段分为 k 组，使得每组的线段交非空，最大化每组组的线段交之和。

题解

首先假定所有线没有互相包含的关系，将所有线段 $[l_i,r_i)$ 按 r_i 从大到小排列，设 $\text{dp}(i,j)$
表示将 j 条线段分到 前 i 组得到的答案。

将第 $j+1$ 到 k 条线段分到同一组，如果 $l_k\gt r_{j+1}$，则线段交非空且 $\text{dp}(i-1,j)$ 合法，
不难得到如下状态转移

$$ \text{dp}(i,k)\gets \text{dp}(i-1,j)+l_k-r_{j+1} $$

2026/01/14 03:31 3/4 题解

CVBB ACM Team - https://wiki.cvbbacm.com/

由于所有线没有互相包含的关系且 r_i 递减，不难发现 l_i 也递减。

因此对 $i\gt j$，如果 $l_k\le r_{i+1}$，则一定有 $l_k\le r_{j+1}$。同时如果 $l_j\le r_{k+1}$，则 $l_i\le
r_{k+1}$，所以决策具有单调性。

于是每个 i，$O(n)$ 单调队列维护所有合法 $\text{dp}(i-1,j)-r_{j+1}$ 即可。总时间复杂度 $O(nk)$。

接下来考虑某些可以包含其他线段的线段，首先将任何一条线段放入一个已经存在的组一定使得答案不增。

而如果要将一条包含其他线段的线段放入一个已经存在的组，则将它放入一个被它包含的线段所在的组一
定使得答案不减，是最佳选择。

因此对满足上述条件的线段只有两种最优选择，一种是放入已经存在的组，这样对答案无贡献。一种是创
建一个组，这样贡献为该线段长度。

于是可以处理完所有不包含其他线段的线段，然后枚举他们分成的组数 i，然后取前 $k-i$ 条包含其他线
段的线段独立建组构成答案。

至于如果判定一条线段是否包含其他线段，可以将所有线段按 r_i 第一关键字从大到小排序 l_i 第二
关键字从小到大排序，然后维护最小右端点。

const int MAXN=5e3+5,inf=1e9;
struct Seg{
 int l,r;
 bool operator < (const Seg &b)const{
 return l>b.l||(l==b.l&&r<b.r);
 }
}seg[MAXN],a[MAXN];
int len[MAXN],dp[MAXN][MAXN];
pair<int,int> que[MAXN];
int main()
{
 int n=read_int(),k=read_int();
 _for(i,0,n){
 seg[i].l=read_int();
 seg[i].r=read_int();
 }
 sort(seg,seg+n);
 int minr=inf,n1=0,n2=0;
 _for(i,0,n){
 if(seg[i].r<minr){
 minr=seg[i].r;
 a[++n1]=seg[i];
 }
 else
 len[++n2]=seg[i].r-seg[i].l;
 }
 mem(dp,-1);
 dp[0][0]=0;
 _rep(i,1,k){
 int head=0,tail=-1;
 _rep(j,1,n1){

Last
update:
2021/07/20
15:23

2020-2021:teams:legal_string:组队训练
比赛记录:contest4 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest4&rev=1626765837

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

 if(~dp[i-1][j-1]){
 pair<int,int> t=make_pair(dp[i-1][j-1]-a[j].l,-a[j].l);
 while(head<=tail&&que[tail]<t)tail--;
 que[++tail]=t;
 }
 while(head<=tail&&a[j].r+que[head].second<=0)head++;
 if(head<=tail)
 dp[i][j]=que[head].first+a[j].r;
 }
 }
 sort(len+1,len+n2+1,greater<int>());
 _rep(i,1,n2)len[i]+=len[i-1];
 int ans=0;
 _rep(i,0,min(n2,k)){
 if(~dp[k-i][n1])
 ans=max(ans,dp[k-i][n1]+len[i]);
 }
 enter(ans);
 return 0;
}

赛后总结

jxm：过了签到后就一直debug，先给自己de，然后帮队友de，后来de不下去直接重写了一份。再后来就开始
罚坐了，甚至没把所有题看完，或许下次应该在罚坐的时候把所有题先看一遍？

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest4&rev=1626765837

Last update: 2021/07/20 15:23

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest4&rev=1626765837

	题解
	B. Cannon
	题意
	题解

	G. League of Legends
	题意
	题解

	赛后总结

