
2026/01/14 03:29 1/8 题解

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

题解

C. Cover the Paths

题意

给定一棵树和若干路径，要求选出最小的点集，使得每条路径上至少有一个点。

题解

强制以 1 为根，根据每条路径两端点的 LCA 深度从大到小排序。

对于 LCA 深度最大的路径，显然必须选择一个点，由于其他路径的 LCA 深度都不小
于该路径，显然选择该路径的 LCA 最优。

然后再考虑深度第二大的点，如果该路径上已经有点被选就不再选点，否则再选一个 LCA，不断
贪心。

贪心正确性是由于该决策顺序下路径 LCA 深度递增，所以之前选的点深度越小越好，因此前面
的路径的点只选 LCA，且尽量少选。

const int MAXN=1e5+5;
#define lowbit(x) ((x)&(-x))
namespace Tree{
 int c[MAXN];
 void add(int pos){
 while(pos<MAXN){
 c[pos]++;
 pos+=lowbit(pos);
 }
 }
 int query(int pos){
 int ans=0;
 while(pos){
 ans+=c[pos];
 pos-=lowbit(pos);
 }
 return ans;
 }
 int query(int L,int R){
 return query(R)-query(L-1);
 }
}
struct Edge{
 int to,next;

https://codeforces.com/group/2g1PZcsgml/contest/337661

Last
update:
2021/08/03
21:20

2020-2021:teams:legal_string:组队训练
比赛记录:contest5 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest5&rev=1627996843

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:29

}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
int d[MAXN],sz[MAXN],f[MAXN],dfn[MAXN],dfs_t;
int h_son[MAXN],mson[MAXN],p[MAXN];
void dfs_1(int u,int fa,int depth){
 sz[u]=1,f[u]=fa,d[u]=depth,mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)continue;
 dfs_1(v,u,depth+1);
 sz[u]+=sz[v];
 if(sz[v]>mson[u]){
 h_son[u]=v;
 mson[u]=sz[v];
 }
 }
}
void dfs_2(int u,int top){
 dfn[u]=++dfs_t,p[u]=top;
 if(mson[u])
 dfs_2(h_son[u],top);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==f[u]||v==h_son[u])
 continue;
 dfs_2(v,v);
 }
}
int query(int u,int v){
 int ans=0;
 while(p[u]!=p[v]){
 if(d[p[u]]<d[p[v]])
 swap(u,v);
 ans+=Tree::query(dfn[p[u]],dfn[u]);
 u=f[p[u]];
 }
 if(d[u]>d[v])
 swap(u,v);
 ans+=Tree::query(dfn[u],dfn[v]);
 return ans;
}
int lca(int u,int v){
 while(p[u]!=p[v]){
 if(d[p[u]]<d[p[v]])swap(u,v);
 u=f[p[u]];
 }

2026/01/14 03:29 3/8 题解

CVBB ACM Team - https://wiki.cvbbacm.com/

 return d[u]<d[v]?u:v;
}
struct Node{
 int u,v,p;
 bool operator < (const Node b)const{
 return d[p]>d[b.p];
 }
}node[MAXN];
int main(){
 int n=read_int();
 _for(i,1,n){
 int u=read_int(),v=read_int();
 Insert(u,v);
 Insert(v,u);
 }
 dfs_1(1,0,0);
 dfs_2(1,1);
 int m=read_int();
 _for(i,0,m){
 int u=read_int(),v=read_int(),p=lca(u,v);
 node[i]=Node{u,v,p};
 }
 sort(node,node+m);
 vector<int> ans;
 _for(i,0,m){
 if(query(node[i].u,node[i].v)==0){
 ans.push_back(node[i].p);
 Tree::add(dfn[node[i].p]);
 }
 }
 enter(ans.size());
 for(int u:ans)
 space(u);
 return 0;
}

J. Subsequence Sum Queries

题意

给定一个长度为 n 的序列，接下来 q 个询问，每次询问区间 $[l,r]$ 有多少个子序列满足元素之和整
除 m。

题解

考虑分治处理询问。设当前维护区间为 $[lef,rig]$，$mid=\frac {lef+rig}2$。对 $[l,r]\in
[lef,mid],[mid+1,rig]$ 的询问直接递归到左右区间处理。

Last
update:
2021/08/03
21:20

2020-2021:teams:legal_string:组队训练
比赛记录:contest5 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest5&rev=1627996843

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:29

对于跨 mid 的询问，提前 $O\left((rig-lef)m\right)$ 处理出区间 $[i,mid](lef\le i\le
mid),[mid+1,j](mid+1\le j\le rig)$ 的答案。

然后对每个询问相当于背包合并，时间复杂度 $O(qm^2)$。于是总时间复杂度 $O(nm\log n+qm^2)$。

const int MAXN=2e5+5,MAXM=20,mod=1e9+7;
int ans[MAXN],a[MAXN],m;
struct query{
 int lef,rig,id;
};
int s[MAXN][MAXM],temp[MAXM<<1];
void solve(int lef,int rig,vector<query> b){
 int mid=lef+rig>>1;
 if(lef==rig){
 _for(i,0,b.size())
 ans[b[i].id]=1+(a[mid]==0);
 return;
 }
 mem(s[mid],0);
 s[mid][0]++;
 s[mid][a[mid]]++;
 for(int i=mid-1;i>=lef;i--){
 _for(j,0,m)
 s[i][(a[i]+j)%m]=(s[i+1][(a[i]+j)%m]+s[i+1][j])%mod;
 }
 mem(s[mid+1],0);
 s[mid+1][0]++;
 s[mid+1][a[mid+1]]++;
 for(int i=mid+2;i<=rig;i++){
 _for(j,0,m)
 s[i][(a[i]+j)%m]=(s[i-1][(a[i]+j)%m]+s[i-1][j])%mod;
 }
 vector<query>b1,b2;
 _for(i,0,b.size()){
 if(b[i].rig<=mid)
 b1.push_back(b[i]);
 else if(b[i].lef>mid)
 b2.push_back(b[i]);
 else{
 mem(temp,0);
 _for(j,0,m)_for(k,0,m)
 temp[j+k]=(temp[j+k]+1LL*s[b[i].lef][j]*s[b[i].rig][k])%mod;
 ans[b[i].id]=(temp[0]+temp[m])%mod;
 }
 }
 solve(lef,mid,b1);
 solve(mid+1,rig,b2);
}
int main()
{

2026/01/14 03:29 5/8 题解

CVBB ACM Team - https://wiki.cvbbacm.com/

 int n=read_int();
 m=read_int();
 _rep(i,1,n)a[i]=read_LL()%m;
 int q=read_int();
 vector<query> b;
 _for(i,0,q){
 int l=read_int(),r=read_int();
 b.push_back(query{l,r,i});
 }
 solve(1,n,b);
 _for(i,0,q)
 enter(ans[i]);
 return 0;
}

L. Increasing Costs

题意

给定一个无向连通图，定义源点为 1 号点。对每条边，询问删除该边会导致源点到多少个点的最短路改
变。

题解

首先跑最短路，然后保留所有在最短路树上的边，同时规定每条边方向由距离近的点指向距离远的点，易
知构成有向无环图。

问题转化为求有向无环图的支配边。

对任意一个点，如果该点有至少两条入边，易知所有入边支配点集均为空，否则该边的支配点集等价于该
点的支配子树。

const int MAXN=2e5+5,MAXM=2e5+5,MAXV=22;
namespace Tree{
 struct Edge{
 int to,id,next;
 }edge[MAXN+MAXM];
 int head1[MAXN],head2[MAXN],edge_cnt;
 int deg[MAXN],f[MAXN],dep[MAXN],anc[MAXN][MAXV],lg2[MAXN];
 int deg0[MAXN];
 void Insert1(int u,int v,int id){
 edge[++edge_cnt]=Edge{v,id,head1[u]};
 head1[u]=edge_cnt;
 deg[v]++;
 deg0[v]++;
 }
 void Insert2(int u,int v){
 edge[++edge_cnt]=Edge{v,0,head2[u]};

Last
update:
2021/08/03
21:20

2020-2021:teams:legal_string:组队训练
比赛记录:contest5 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest5&rev=1627996843

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:29

 head2[u]=edge_cnt;
 }
 int LCA(int u,int v){
 if(dep[u]<dep[v])
 swap(u,v);
 while(dep[u]>dep[v])u=anc[u][lg2[dep[u]-dep[v]]];
 if(u==v)
 return u;
 for(int i=MAXV-1;i>=0;i--){
 if(anc[u][i]!=anc[v][i])
 u=anc[u][i],v=anc[v][i];
 }
 return anc[u][0];
 }
 int build(int n){
 lg2[1]=0;
 _for(i,2,MAXN)lg2[i]=lg2[i>>1]+1;
 int rt=n+1;
 queue<int> q;
 _rep(i,1,n){
 if(deg[i]==0){
 f[i]=rt;
 q.push(i);
 }
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 dep[u]=dep[f[u]]+1;
 Insert2(f[u],u);
 anc[u][0]=f[u];
 for(int i=1;i<MAXV;i++)
 anc[u][i]=anc[anc[u][i-1]][i-1];
 for(int i=head1[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(f[v]==0)
 f[v]=u;
 else
 f[v]=LCA(u,f[v]);
 deg[v]--;
 if(deg[v]==0)
 q.push(v);
 }
 }
 return rt;
 }
 int sz[MAXN],ans[MAXM];
 void dfs(int u){
 sz[u]=1;
 for(int i=head2[u];i;i=edge[i].next){
 int v=edge[i].to;

2026/01/14 03:29 7/8 题解

CVBB ACM Team - https://wiki.cvbbacm.com/

 dfs(v);
 sz[u]+=sz[v];
 }
 }
 void solve(int n,int m){
 int rt=build(n);
 dfs(rt);
 _rep(u,1,n){
 for(int i=head1[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(deg0[v]==1)
 ans[edge[i].id]=sz[v];
 }
 }
 _for(i,0,m)
 enter(ans[i]);
 }
}
struct Edge{
 int to,w,id,next;
}edge[MAXM<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w,int id){
 edge[++edge_cnt]=Edge{v,w,id,head[u]};
 head[u]=edge_cnt;
}
LL dis[MAXN];
bool vis[MAXN];
int main(){
 int n=read_int(),m=read_int();
 _for(i,0,m){
 int u=read_int(),v=read_int(),w=read_int();
 Insert(u,v,w,i);
 Insert(v,u,w,i);
 }
 priority_queue<pair<LL,int> >q;
 mem(dis,127);
 dis[1]=0;
 q.push(make_pair(-dis[1],1));
 while(!q.empty()){
 int u=q.top().second;
 q.pop();
 if(vis[u])continue;
 vis[u]=true;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(dis[v]>dis[u]+edge[i].w){
 dis[v]=dis[u]+edge[i].w;
 q.push(make_pair(-dis[v],v));
 }
 }

Last
update:
2021/08/03
21:20

2020-2021:teams:legal_string:组队训练
比赛记录:contest5 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest5&rev=1627996843

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:29

 }
 _rep(u,1,n){
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(dis[v]==dis[u]+edge[i].w)
 Tree::Insert1(u,v,edge[i].id);
 }
 }
 Tree::solve(n,m);
 return 0;
}

赛后总结

jxm：开局一个多小时后就罚坐了，疯狂写假题，下次一定先确认思路没问题再写题。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest5&rev=1627996843

Last update: 2021/08/03 21:20

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest5&rev=1627996843

	题解
	C. Cover the Paths
	题意
	题解

	J. Subsequence Sum Queries
	题意
	题解

	L. Increasing Costs
	题意
	题解

	赛后总结

