
2026/01/14 03:31 1/7 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 0 0 0
B 1 2 2
C 1 0 2
D 0 0 0
E 2 0 2
F 2 0 1
G 2 0 0
H 0 0 0
I 2 0 1
J 2 0 1

题解

G. Yu Ling(Ling YueZheng) and Colorful Tree

题意

给定一棵点权树，初始值各点权值为 0，接下来两种操作：

$w(u)\gets x$，保证 $w(u)$ 之前一定为 0，该类操作的 x 都不相同且 $1\le x\le n$1.
给定 $1\le l,r,x\le n$，查询 u 的最近祖先节点 v，满足 $x\mid w(v),l\le w(v)\le r$，输出 u,v2.
之间的距离

题解

考虑离线操作，对每个权值，维护对他有贡献的操作序列。

首先对操作 1，显然 x 会对所有是 x 的因子的权值产生贡献，于是将操作 1 加入到所有 x 的因
子的操作序列中。

对操作 2，直接丢到权值 x 的操作序列处理即可。

接下来单独考虑每个权值的操作序列，发现操作序列一定都满足 $x\mid w(v)$ 这个约束。

于是只需要考虑 $l\le w(v)\le r$ 和 v 是 u 的最近祖先这两个约束。

首先转化一下v 是 u 的最近祖先这个约束，不难发现满足该约束的 v 就是 u 的祖先中
dfs 序最大的点。

维护一个二维矩阵 C，$C[x][y]$ 表示 dfs 序最大的 v，满足 $w(v)=x$ 且 $w(v)$ 是节点
y 的祖先。

https://ac.nowcoder.com/acm/contest/11254

Last
update:
2021/07/27
21:28

2020-2021:teams:legal_string:组队训练
比赛记录:contest6 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest6&rev=1627392521

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

于是对操作 1 等价于修改

$$ C[x][\text{dfn}(u)\sim \text{dfn}(u)+\text{sz}(u)-1]\gets \text{dfn}(u) $$

操作 2 等价于查询

$$ \max\left(C[l\sim r][\text{dfn}(u)]\right) $$

考虑树套树维护 C，考虑修改操作共 $O(n\log n)$ 次，查询操作 $O(n)$，于是总时间复杂度
$O\left(n\log^3 n\right)$。

关于空间复杂度，首先对每个权值，由于他的倍数最多只有 $O(n)$ 个，所以修改操作最大只有 $O(n)$
次。

树套树第二维是动态开点线段树，于是空间复杂度 $O\left(n\log^2 n\right)$。注意处理完每个权值的操作
序列后要删除线段树，否则会爆空间。

const int MAXN=1.2e5+5,MAXM=150;
struct Edge{
 int to,w,next;
}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w){
 edge[++edge_cnt]=Edge{v,w,head[u]};
 head[u]=edge_cnt;
}
int dfl[MAXN],dfr[MAXN],dfu[MAXN],dfs_t;
LL dis[MAXN];
void dfs(int u,int fa){
 dfl[u]=++dfs_t;
 dfu[dfs_t]=u;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)continue;
 dis[v]=dis[u]+edge[i].w;
 dfs(v,u);
 }
 dfr[u]=dfs_t;
}
struct node{
 int u,x,l,r,id;
 node(int u=0,int x=0,int l=0,int r=0,int id=0){
 this->u=u;
 this->x=x;
 this->l=l;
 this->r=r;
 this->id=id;
 }
};
namespace Tree{
 int ch[MAXN*MAXM][2],s[MAXN*MAXM],cnt;

2026/01/14 03:31 3/7 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 void clear(){cnt=0;}
 void update(int &k,int vl,int vr,int ql,int qr,int v){
 if(!k){
 k=++cnt;
 s[k]=0;
 ch[k][0]=ch[k][1]=0;
 }
 if(ql<=vl&&vr<=qr){
 s[k]=max(s[k],v);
 return;
 }
 int vm=vl+vr>>1;
 if(vm>=ql)
 update(ch[k][0],vl,vm,ql,qr,v);
 if(vm<qr)
 update(ch[k][1],vm+1,vr,ql,qr,v);
 }
 int query(int k,int vl,int vr,int pos){
 if(!k)return 0;
 if(vl==vr)return s[k];
 int vm=vl+vr>>1;
 if(vm>=pos)
 return max(s[k],query(ch[k][0],vl,vm,pos));
 else
 return max(s[k],query(ch[k][1],vm+1,vr,pos));
 }
}
int rt0[MAXN],rt[MAXN],n;
#define lowbit(x) (x&(-x))
void update(int pos,int u){
 Tree::update(rt0[pos],1,n,dfl[u],dfr[u],dfl[u]);
 while(pos<=n){
 Tree::update(rt[pos],1,n,dfl[u],dfr[u],dfl[u]);
 pos+=lowbit(pos);
 }
}
int query(int l,int r,int u){
 int ans=0;
 while(l<=r){
 ans=max(ans,Tree::query(rt0[r],1,n,dfl[u]));
 for(--r;r-l>=lowbit(r);r-=lowbit(r))
 ans=max(ans,Tree::query(rt[r],1,n,dfl[u]));
 }
 return ans;
}
void del(int pos){
 rt0[pos]=0;
 while(pos<=n){
 rt[pos]=0;
 pos+=lowbit(pos);
 }

Last
update:
2021/07/27
21:28

2020-2021:teams:legal_string:组队训练
比赛记录:contest6 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest6&rev=1627392521

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

}
vector<int> d[MAXN];
vector<node> opt[MAXN];
LL ans[MAXN];
void solve(int v){
 for(node q:opt[v]){
 if(q.x==0){
 int t=query(q.l,q.r,q.u);
 if(t==0)
 ans[q.id]=-1;
 else
 ans[q.id]=dis[q.u]-dis[dfu[t]];
 }
 else
 update(q.x,q.u);
 }
 for(node q:opt[v]){
 if(q.x!=0)
 del(q.x);
 }
 Tree::clear();
}
int main(){
 n=read_int();
 int q=read_int();
 _for(i,1,n){
 int u=read_int(),v=read_int(),w=read_int();
 Insert(u,v,w);
 Insert(v,u,w);
 }
 dfs(1,0);
 _rep(i,1,n){
 for(int j=i;j<=n;j+=i)
 d[j].push_back(i);
 }
 int qcnt=0;
 while(q--){
 int type=read_int(),u=read_int();
 if(type==0){
 int x=read_int();
 for(int v:d[x])
 opt[v].push_back(node(u,x));
 }
 else{
 int l=read_int(),r=read_int(),x=read_int();
 opt[x].push_back(node(u,0,l,r,qcnt++));
 }
 }
 _rep(i,1,n)
 solve(i);

2026/01/14 03:31 5/7 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 _for(i,0,qcnt){
 if(ans[i]==-1)
 puts("Impossible!");
 else
 enter(ans[i]);
 }
 return 0;
}

I. Kuriyama Mirai and Exclusive Or

题意

给定一个序列 A，接下来两种操作：

$a_i\gets a_i\oplus x(i\in [l,r])$1.
$a_i\gets a_i\oplus (x+i-l)(i\in [l,r])$2.

题解

$$ a_n=\left(\bigoplus_{i=1}^n b_i\right)\oplus\left(\bigoplus_{i=1}^n\bigoplus_{k=0}^{29} 2^k
c(i,k)\right)\\ c(n,k)=\bigoplus_{i\times 2^k\le n} d(n-i\times 2^k,k) $$

简单来讲 a_n 是 $b_i,c(i,k)$ 的前缀和，$c(n,k)$ 是 $d(i,k)$ 的隔 2^k 项前缀和。

然后操作 1 只需要修改 b_i 即可。操作 2 的影响按位考虑影响，将 $[l,r]$ 区间操作等效于
$[l,\inf),[r+1,\inf)$ 两次操作。

每次操作对每个位是按 001111000011110000 的规律周期性变化的。

对该序列进行一次差分，于是得到 001000100010001000，这个可以利用 $c(n,k)$ 维护。

再一次差分得到 001000000000000000 发现可以利用 $d(n,k)$ 维护。

最后处理一下最开始非周期的部分即可，时间复杂度 $O((n+q)\log v)$。

const int MAXN=6e5+5,MAXB=30,mod=1<<30;
int n,a[MAXN],b[MAXN];
bitset<MAXN> c[MAXB];
void update(int pos,int v){
 _for(i,0,MAXB){
 int cyc=1<<(i+1),p1=pos%cyc,p2=((cyc-
v%cyc)%cyc+(1<<i))%cyc,d=pos>>(i+1);
 if(p1>=p2){
 if(p1<p2+(1<<i)){
 b[pos]^=1<<i;
 if(d*cyc+p2+(1<<i)<MAXN)
 b[d*cyc+p2+(1<<i)]^=1<<i;

Last
update:
2021/07/27
21:28

2020-2021:teams:legal_string:组队训练
比赛记录:contest6 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest6&rev=1627392521

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

 }
 d++;
 }
 else if(p1<p2-(1<<i)){
 b[pos]^=1<<i;
 if(d*cyc+p2-(1<<i)<MAXN)
 b[d*cyc+p2-(1<<i)]^=1<<i;
 }
 if(d*cyc+p2<MAXN)
 c[i].flip(d*cyc+p2);
 }
}
int main() {
 n=read_int();
 int q=read_int();
 _for(i,0,n)a[i]=read_int();
 while(q--){
 int opt=read_int(),l=read_int()-1,r=read_int()-1,x=read_int();
 if(opt==0){
 b[l]^=x;
 b[r+1]^=x;
 }
 else{
 update(l,(x-l+mod)%mod);
 update(r+1,(x-l+mod)%mod);
 }
 }
 _for(i,0,MAXB){
 _for(j,0,n)if(j+(1<<i)<MAXN)
 c[i][j+(1<<i)]=c[i][j+(1<<i)]^c[i][j];
 _for(j,1,n)
 c[i][j]=c[i][j]^c[i][j-1];
 _for(j,0,n)
 a[j]^=(c[i][j]<<i);
 }
 _for(i,1,n)b[i]^=b[i-1];
 _for(i,0,n)a[i]^=b[i];
 _for(i,0,n)
 space(a[i]);
 return 0;
}

赛后总结

jxm：找操作中的不变量可能是解题的一种思路，比如这场的 B 或者博弈论题。 A 据说是 dp
优化题，但没看懂题解，先咕了。

2026/01/14 03:31 7/7 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest6&rev=1627392521

Last update: 2021/07/27 21:28

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest6&rev=1627392521

	补题情况
	题解
	G. Yu Ling(Ling YueZheng) and Colorful Tree
	题意
	题解

	I. Kuriyama Mirai and Exclusive Or
	题意
	题解

	赛后总结

