
2026/01/14 03:31 1/9 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 0 0 0
C 2 0 0
E 0 0 0
F 0 0 2
G 2 0 2
I 2 0 0
J 2 0 1

题解

C. Cheating and Stealing

题意

给定一个长度为 n 的 01 串 S，对每个 $i=1\sim n$，询问下述流程的结果：

初始化答案为 $0$1.
找到最短的前缀满足至少有 i 个 0 或者 i 个 1，且 0 的个数和 1 的个数的差值不小于 2，2.
如果没有满足条件的前缀则输出答案
对这个前缀，如果 1 比 0 多，则答案加一3.
删除这个前缀，跳回操作 $2$4.

题解

首先不难发现对于固定 i，由于每次操作至少取出长度为 i 的前缀，所以上述操作最多执行
$O\left(\frac ni\right)$ 次，所以总操作次数 $O(n\log n)$。

所以如果能 $O(1)$ 找到每次操作满足条件的前缀，即可 $O(n\log n)$ 解决此题。

首先考虑如何找到至少有 i 个 0 或者 i 个 1 的最短前缀，可以提前记录第 k 个 0 和 1 的位置，
分被为 $p(0,k)$ 和 $p(1,k)$。

于是可以 $O(1)$ 跳转。接下来在这个位置的基础上寻找满足 0 的个数和 1 的个数的差值不小于 2 的
位置。

如果当前位置已经满足条件，则已经找到前缀。否则假如当前位置的得分差为 1，则在移动一位，使得
分差为 0 或 2。如果是 2 则也已经找到前缀。

接下来只需要考虑得分差为 0 的情况，提前维护 next 数组表示从得分相同到比赛结束的位置。

不难发现有 $\text{next}(i)=(s[i]==s[i+1])?(i+1):\text{next}(i+2)$，提前预处理后也可以 $O(1)$ 跳转。

https://ac.nowcoder.com/acm/contest/11256

Last
update:
2021/08/01
19:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1627818525

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

const int MAXN=1e6+5,MAXM=21,mod=998244353;
char s[MAXN];
int pre[MAXN],nxt[MAXN],det[MAXN],p1[MAXN],p0[MAXN],cnt1,cnt0;
int quick_pow(int n,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;
 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
int solve(int n,int i){
 int lef=1,ans=0;
 while(true){
 int c1=cnt1-pre[lef-1],c0=n-lef+1-c1,rig=n+1;
 if(c1>=i)
 rig=min(rig,p1[pre[lef-1]+i]);
 if(c0>=i)
 rig=min(rig,p0[lef-1-pre[lef-1]+i]);
 if(rig==n+1)
 break;
 if(abs(det[rig]-det[lef-1])<2){
 if(det[rig-1]!=det[lef-1])
 rig++;
 rig=nxt[rig];
 }
 if(rig==0)
 break;
 if(det[rig]-det[lef-1]>=2)
 ans++;
 lef=rig+1;
 }
 return ans;
}
int main(){
 int n=read_int();
 scanf("%s",s+1);
 _rep(i,1,n){
 if(s[i]=='W'){
 p1[++cnt1]=i;
 pre[i]=1;
 det[i]=1;
 }
 else{
 p0[++cnt0]=i;
 pre[i]=0;
 det[i]=-1;
 }

2026/01/14 03:31 3/9 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 pre[i]+=pre[i-1];
 det[i]+=det[i-1];
 }
 for(int i=n-1;i;i--)
 nxt[i]=(s[i]==s[i+1])?i+1:nxt[i+2];
 int ans=0;
 _rep(i,1,n)
 ans=(ans+1LL*solve(n,i)*quick_pow(n+1,i-1))%mod;
 enter(ans);
 return 0;
}

F. Finding Points

题意

给定一个凸包，点按照逆时针给出，然后求凸包内一点，想要这个点与这个凸多边形相邻点组成的 n 个
角的最小值最大，求这个最大值。 $(4≤n≤100)$

题解

赛场上两分钟出思路，然后看通过率⋯感觉是不是有坑就没敢写⋯赛后听说改数据了⋯血亏！

显然要二分（废话）。

然后对于每一组相邻的点，这个点和这两个点组成的角大于某个角，则这个点一定在这两个点组成的大弓
形内，根据圆周角求 n 个圆看面积交即可，然后比赛的时候猜到会有点跑到凸包外面的情况，但是我不
会写圆的交再交凸包，这也是我怂了的原因之一，谁知道改数据嘛！

所以就是个板子题⋯

int N;
Point ppx[110];
int main() {
 scanf("%d",&C.n);
 N=C.n;
 for(int i=0;i<C.n;i++) {
 ppx[i].input();
 }
 ppx[C.n]=ppx[0];
 double l=eps,r=2.0*acos(-1)/N;
 while(r-l>1e-15) {
 double mid=(l+r)/2;
 for (int i=0;i<C.n;i++) {
 C.c[i].r=(ppx[i].distance(ppx[i+1])/2/sin(mid));
 double dtmp=C.c[i].r*cos(mid);
 Point ptmp=(ppx[i]+ppx[i+1])/2;
 Point pptmp=(ppx[i]-ptmp);

Last
update:
2021/08/01
19:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1627818525

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

 pptmp=pptmp.rotright();
 pptmp=pptmp.trunc(dtmp);
 ptmp=ptmp+pptmp;
 C.c[i].p=ptmp;
 }
 C.getarea();
 if(C.ans[C.n]>1e-20)l=mid;
 else r=mid;
 }
 printf("%.20lf\n",l*180/pi);
 return 0;
}

G. Greater Integer, Better LCM

题意

给一个大数的质因数分解形式，设为 c ，并给出 a 和 b ，求最小的 $x+y$ ，使得
$lcm(a+x,b+y)=c$ 。 $(1≤n≤18)$ 代表质因子个数 ，保证因子幂次和相加不超过 18 ，
$a,b,c≤10^{32}$ 。

题解

类似于数位 dp 。我们对每一个质因子进行枚举幂次，并且状压，位为 1 代表这一个因子的幂次取满，
不取满为 0 ， $dp[con]$ 代表这个压缩状态下的相对于 b 的最小代价，也就是 b 最少要补多少才
能到这个状态。

于是我们跑出初始每个状态下的最小代价，但是还需要处理 a 。我们把每一个末状态放进 vec 里，然
后看哪些比 a 大，代价是存的 v 值减 a ，剩下至少需要满足 $(1<<n)-1-con$ 的状态，于是我们需
要找一个无后效性的求状态数组的方法，就是让 dp 数组变成至少满足这个状态的最小代价。再处理一
下就好了

#include <bits/stdc++.h>
using namespace std;
#define ll __int128

inline void scan(ll &X) {
 X = 0;
 int w=0;
 char ch=0;
 while(!isdigit(ch)) {
 w|=ch=='-';
 ch=getchar();
 }
 while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
 if (w) X = -X;

2026/01/14 03:31 5/9 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

}
void print(ll x) {
 if (!x) return ;
 if (x < 0) putchar('-'),x = -x;
 print(x / 10);
 putchar(x % 10 + '0');
}

ll n,p[110],q[110],a,b;
ll dp[270000];
vector<pair<ll,int> > d;

void dfs(ll pos,ll value,int con) {
 if(pos==n) {
 d.push_back(make_pair(value,con));
 if(value>=b) dp[con]=value-b;
 return;
 }
 for(int i=0;i<=q[pos];i++) {
 dfs(pos+1,value,(i==q[pos])?(con|(1<<pos)):con);
 value=value*p[pos];
 }
}

int main() {
 memset(dp,0x3f3f3f3f,sizeof(dp));
 scan(n);
 for(int i=0;i<n;i++) scan(p[i]),scan(q[i]);
 scan(a);
 scan(b);
 dfs(0,1,0);
 for(int i=0;i<n;i++) {
 for(int j=0;j<(1<<n);j++) {
 if(!(j&(1<<i))) dp[j]=min(dp[j],dp[j+(1<<i)]);
 }
 }
 ll ans=1e36;
 for (int i=0;i<d.size();i++) {
 pair<ll,int> x=d[i];
 if (x.first>=a) ans=min(ans,x.first-a+dp[(1<<n)-1-x.second]);
 }
 if(ans) print(ans);
 else puts("0");
 return 0;
}

被吊打的标算

考虑枚举 $S=\{p_1,p_2\cdots p_n\}$ 的所有子集。

Last
update:
2021/08/01
19:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1627818525

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

对每个子集 $T=\{a_1,a_2\cdots a_i\}$，强制令 x 取 $\{p_1,p_2\cdots p_n\}-T$ 的每个素因子的最高次
幂，强制令 y 取 T 的每个素因子的最高次幂。

这样，就消除了 $\text{lcm}(x,y)=c$ 的限制，接下来分别考虑 $x\ge a,y\ge b$ 的限制。

不难发现 x 在 $a_1,a_2\cdots a_i$ 的幂次都是自由的，设 $x=t\cfrac
{c}{a_1^{q_1}a_2^{q_2}\cdots a_i^{q_i}}$，因此需要找到最小的 $t\mid
a_1^{q_1}a_2^{q_2}\cdots a_i^{q_i}$，且 $x\ge a$。

一种暴力解法为直接枚举 $a_1^{q_1}a_2^{q_2}\cdots a_i^{q_i}$ 的所有因子，最坏情况下 c 有
n 个因子，每个因子幂次均为 1。

此时时间复杂度等价于子集枚举套子集枚举的时间复杂度，可以认为是

$$ \sum_{i=0}^n {n\choose i}2^i=(1+2)^n $$

考虑一个优化，将 $a_1^{q_1}a_2^{q_2}\cdots a_i^{q_i}$ 平均分成两个序列，每个序列枚举因子，对
一个序列的因子进行排序，然后另一个序列进行二分查找。

这样里层子集枚举的复杂度优化为 $O\left(n{\sqrt 2}^n\right)$，总时间复杂度为

$$ \sum_{i=0}^n {n\choose i}i{\sqrt 2}^i=(1+\sqrt 2)^{n+1} $$

const int MAXN=18;
int n,p[MAXN],q[MAXN];
LL A[1<<MAXN],B[1<<MAXN];
LL vec1[1<<MAXN],vec2[1<<MAXN];
vector<pair<int,int> > d;
int cal(int l,int r,LL *vec){
 int n=0;
 vec[n++]=1;
 _for(i,l,r){
 int last=n;
 LL x=1;
 _for(j,0,d[i].second){
 x*=d[i].first;
 _for(k,0,last)
 vec[n++]=vec[k]*x;
 }
 }
 return n;
}
void solve(LL v,LL *ans){
 _for(i,0,1<<n){
 LL base=1;
 d.clear();
 _for(j,0,n){
 if(i&(1<<j))
 d.push_back(make_pair(p[j],q[j]));
 else{
 _for(k,0,q[j])

2026/01/14 03:31 7/9 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 base*=p[j];
 }
 }
 int n1=cal(0,d.size()/2,vec1);
 int n2=cal(d.size()/2,d.size(),vec2);
 sort(vec1,vec1+n1);
 ans[i]=1e32;
 _for(j,0,n2){
 vec2[j]*=base;
 int pos=lower_bound(vec1,vec1+n1,(v+vec2[j]-1)/vec2[j])-vec1;
 if(pos!=n1)
 ans[i]=min(ans[i],vec1[pos]*vec2[j]);
 }
 }
}
int main(){
 n=read_int();
 _for(i,0,n){
 p[i]=read_int();
 q[i]=read_int();
 }
 LL a=read_LL(),b=read_LL();
 solve(a,A);
 solve(b,B);
 LL ans=1e32;
 int S=(1<<n)-1;
 _for(i,0,1<<n)
 ans=min(ans,A[i]+B[S^i]-a-b);
 enter(ans);
 return 0;
}

I. Interval Queries

题意

给定一个长度为 n 的序列 A，接下来有 q 个询问。每次询问给定 l,r,k，求

$$ \sum_{i=0}^{k-1}f(l-i,r+i)(n+1)^i $$

其中 f 定义如下

$$ f(l,r)=\max(\{k|\exists x\forall i(0\le i\le k-1\to \exists j(l\le j\le r,a_j=x+i))\}) $$

题解

考虑回滚莫队处理询问，难点在于怎么维护最大的 k。

Last
update:
2021/08/01
19:48

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1627818525

https://wiki.cvbbacm.com/ Printed on 2026/01/14 03:31

实际上，这等价于维护数轴上的最长连续线段。可以令 $\text{vl}(x)$​​ 表示以数 x​​ 为左端点的线段在数
轴上的右端点。

$\text{vr}(x)$​ 表示以数 x​ 为右端点的线段在数轴上的左端点。于是只需要保证每条线段的两个端点的
vl,vr 正确性即可，不难 $O(1)$ 维护。

时间复杂度 $O\left(n\sqrt q+\sum k\right)$。

const int MAXN=1e5+5,mod=998244353;
int blk_sz,a[MAXN];
struct query{
 int l,r,k,idx;
 bool operator < (const query &b)const{
 if(l/blk_sz!=b.l/blk_sz)return l<b.l;
 return r<b.r;
 }
}opt[MAXN];
struct node{
 int p1,v1,p2,v2,ans;
}st[MAXN];
int curlen,vis[MAXN],vl[MAXN],vr[MAXN],tp;
void add(int v){
 if(vis[v]++)return;
 int l=vis[v-1]?vl[v-1]:v;
 int r=vis[v+1]?vr[v+1]:v;
 st[++tp]=node{l,vr[l],r,vl[r],curlen};
 vr[l]=r;
 vl[r]=l;
 curlen=max(curlen,r-l+1);
}
void del(int v){
 if(--vis[v])return;
 vr[st[tp].p1]=st[tp].v1;
 vl[st[tp].p2]=st[tp].v2;
 curlen=st[tp].ans;
 tp--;
}
int solve(int l,int r,int k,int n){
 int ans=curlen,base=1;
 _for(i,1,k){
 add(a[l-i]);
 add(a[r+i]);
 base=1LL*base*(n+1)%mod;
 ans=(ans+1LL*curlen*base)%mod;
 }
 for(int i=k-1;i;i--){
 del(a[r+i]);
 del(a[l-i]);
 }
 return ans;

2026/01/14 03:31 9/9 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

}
int ans[MAXN];
int main()
{
 int n=read_int(),q=read_int();
 _rep(i,1,n)
 a[i]=read_int();
 _for(i,0,q){
 int l=read_int(),r=read_int(),k=read_int();
 opt[i]=query{l,r,k,i};
 }
 blk_sz=n/sqrt(q)+1;
 sort(opt,opt+q);
 _for(i,0,q){
 if(opt[i].l/blk_sz==opt[i].r/blk_sz){
 _rep(j,opt[i].l,opt[i].r)
 add(a[j]);
 ans[opt[i].idx]=solve(opt[i].l,opt[i].r,opt[i].k,n);
 for(int j=opt[i].r;j>=opt[i].l;j--)
 del(a[j]);
 }
 }
 int lef=1,rig=0,lst=-1;
 _for(i,0,q){
 if(opt[i].l/blk_sz!=opt[i].r/blk_sz){
 if(opt[i].l/blk_sz!=lst){
 while(lef<=rig)del(a[rig--]);
 lst=opt[i].l/blk_sz;
 rig=min(lst*blk_sz+blk_sz-1,n);
 lef=rig+1;
 }
 while(rig<opt[i].r)add(a[++rig]);
 int tlef=lef;
 while(tlef>opt[i].l)add(a[--tlef]);
 ans[opt[i].idx]=solve(opt[i].l,opt[i].r,opt[i].k,n);
 while(tlef<lef)del(a[tlef++]);
 }
 }
 _for(i,0,q)enter(ans[i]);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1627818525

Last update: 2021/08/01 19:48

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1627818525

	补题情况
	题解
	C. Cheating and Stealing
	题意
	题解

	F. Finding Points
	题意
	题解

	G. Greater Integer, Better LCM
	题意
	题解
	被吊打的标算

	I. Interval Queries
	题意
	题解

