
2026/01/14 05:22 1/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

比赛链接

补题情况

题目 蒋贤蒙 王赵安 王智彪

A 0 0 0
C 2 1 0
E 2 0 0
F 0 1 2
G 2 0 2
I 2 0 0
J 2 1 1

题解

C. Cheating and Stealing

题意

给定一个长度为 n 的 01 串 S，对每个 $i=1\sim n$，询问下述流程的结果：

初始化答案为 $0$1.
找到最短的前缀满足至少有 i 个 0 或者 i 个 1，且 0 的个数和 1 的个数的差值不小于 2，2.
如果没有满足条件的前缀则输出答案
对这个前缀，如果 1 比 0 多，则答案加一3.
删除这个前缀，跳回操作 $2$4.

题解

首先不难发现对于固定 i，由于每次操作至少取出长度为 i 的前缀，所以上述操作最多执行
$O\left(\frac ni\right)$ 次，所以总操作次数 $O(n\log n)$。

所以如果能 $O(1)$ 找到每次操作满足条件的前缀，即可 $O(n\log n)$ 解决此题。

首先考虑如何找到至少有 i 个 0 或者 i 个 1 的最短前缀，可以提前记录第 k 个 0 和 1 的位置，
分被为 $p(0,k)$ 和 $p(1,k)$。

于是可以 $O(1)$ 跳转。接下来在这个位置的基础上寻找满足 0 的个数和 1 的个数的差值不小于 2 的
位置。

如果当前位置已经满足条件，则已经找到前缀。否则假如当前位置的得分差为 1，则在移动一位，使得
分差为 0 或 2。如果是 2 则也已经找到前缀。

接下来只需要考虑得分差为 0 的情况，提前维护 next 数组表示从得分相同到比赛结束的位置。

不难发现有 $\text{next}(i)=(s[i]==s[i+1])?(i+1):\text{next}(i+2)$，提前预处理后也可以 $O(1)$ 跳转。

https://ac.nowcoder.com/acm/contest/11256

Last
update:
2021/08/04
19:19

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1628075951

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

const int MAXN=1e6+5,MAXM=21,mod=998244353;
char s[MAXN];
int pre[MAXN],nxt[MAXN],det[MAXN],p1[MAXN],p0[MAXN],cnt1,cnt0;
int quick_pow(int n,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*n%mod;
 n=1LL*n*n%mod;
 k>>=1;
 }
 return ans;
}
int solve(int n,int i){
 int lef=1,ans=0;
 while(true){
 int c1=cnt1-pre[lef-1],c0=n-lef+1-c1,rig=n+1;
 if(c1>=i)
 rig=min(rig,p1[pre[lef-1]+i]);
 if(c0>=i)
 rig=min(rig,p0[lef-1-pre[lef-1]+i]);
 if(rig==n+1)
 break;
 if(abs(det[rig]-det[lef-1])<2){
 if(det[rig-1]!=det[lef-1])
 rig++;
 rig=nxt[rig];
 }
 if(rig==0)
 break;
 if(det[rig]-det[lef-1]>=2)
 ans++;
 lef=rig+1;
 }
 return ans;
}
int main(){
 int n=read_int();
 scanf("%s",s+1);
 _rep(i,1,n){
 if(s[i]=='W'){
 p1[++cnt1]=i;
 pre[i]=1;
 det[i]=1;
 }
 else{
 p0[++cnt0]=i;
 pre[i]=0;
 det[i]=-1;
 }

2026/01/14 05:22 3/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 pre[i]+=pre[i-1];
 det[i]+=det[i-1];
 }
 for(int i=n-1;i;i--)
 nxt[i]=(s[i]==s[i+1])?i+1:nxt[i+2];
 int ans=0;
 _rep(i,1,n)
 ans=(ans+1LL*solve(n,i)*quick_pow(n+1,i-1))%mod;
 enter(ans);
 return 0;
}

E. Eert Esiwtib

题意

给定一棵以 1 为根的点权树，记第 i 个点的原始点权为 a_i。每条边有一种操作符，可能为
$\text{OR},\text{AND},\text{XOR}$。

设路径 $u\to v$ 上的点权和操作符依次为 $p_1,e_1,p_2\cdots e_{k-1},p_k$，则路径的权重 $w(u,v)=p_1
e_1(p_2 e_2(\cdots (p_{k-2}e_{k-2}(p_{k-1}e_{k-1}p_k))\cdots))$。

定义 $\text{Tree}(u)$ 表示 u 的子树，不包括 u 本身。接下来若干询问，每次给定 d,u，将每个点
的点权变为 $a_i+d\times i$，求

$$ \text{OR}_{v\in Tree(u)}w(u,v),\text{AND}_{v\in Tree(u)}w(u,v),\text{XOR}_{v\in Tree(u)}w(u,v)
$$

注意，每组询问对点权的修改独立，即一个询问对点权的修改不影响另一个询问。同时有 $0\le d\le 100$。

题解

发现 d 很小，直接枚举 d，暴力树形 dp 即可。设 $\text{dp}(u,0/1/2)$ 表示 u 求
$\text{OR},\text{AND},\text{XOR}$ 情况下的答案，大力分类讨论即可。

注意权值直接运算时每个位是独立的，所以在讨论时可以只考虑权值是 $0/1$ 的情况，然后枚举 u 是
$0,1$ 考虑一下即可。

例如，考虑边是 XOR 的情况，计算下式

$$ (a_u\oplus v_1)|(a_u\oplus v_2)|\cdots (a_u\oplus v_k) $$

首先假设 $a_u=0$，得到 $(a_u\oplus v_1)|(a_u\oplus v_2)|\cdots |(a_u\oplus v_k)=v_1|v_2|\cdots
|v_k=\text{dp}(v,0)$。

假设 $a_u=1$，得到 $(a_u\oplus v_1)|(a_u\oplus v_2)|\cdots |(a_u\oplus v_k)=(\sim v_1)|(\sim
v_2)|\cdots |(\sim v_k)=\sim (v_1\And v_2\And \cdots \And v_k)=\sim \text{dp}(v,1)$。

于是有 $\text{dp}(u,0)|=((\sim a_u)\And \text{dp}(v,0))|(a_u\And (\sim \text{dp}(v,1)))$。注意

Last
update:
2021/08/04
19:19

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1628075951

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

$\text{dp}(v)$ 不包含 v 本身的贡献所以还有 $\text{dp}(u,0)|=a_u|a_v$。

总时间复杂度 $O(nd)$。

const int MAXN=1e5+5,MAXV=105;
struct Edge{
 int to,w,next;
}edge[MAXN];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w){
 edge[++edge_cnt]=Edge{v,w,head[u]};
 head[u]=edge_cnt;
}
LL a0[MAXN],a[MAXN],dp[MAXN][3];
int sz[MAXN];
void dfs(int u){
 dp[u][0]=dp[u][2]=0;
 dp[u][1]=-1;
 sz[u]=1;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 dfs(v);
 sz[u]+=sz[v];
 LL t;
 if(edge[i].w==0)t=a[u]|a[v];
 else if(edge[i].w==1)t=a[u]&a[v];
 else t=a[u]^a[v];
 dp[u][0]|=t;
 dp[u][1]&=t;
 dp[u][2]^=t;
 if(sz[v]==1)continue;
 sz[v]--;
 if(edge[i].w==0){
 dp[u][0]|=a[u]|dp[v][0];
 dp[u][1]&=a[u]|dp[v][1];
 if(sz[v]&1)
 dp[u][2]^=a[u]|((~a[u])&dp[v][2]);
 else
 dp[u][2]^=(~a[u])&dp[v][2];
 }
 else if(edge[i].w==1){
 dp[u][0]|=a[u]&dp[v][0];
 dp[u][1]&=a[u]&dp[v][1];
 dp[u][2]^=a[u]&dp[v][2];
 }
 else{
 dp[u][0]|=(a[u]&(~dp[v][1]))|((~a[u])&dp[v][0]);
 dp[u][1]&=(a[u]&(~dp[v][0]))|((~a[u])&dp[v][1]);
 if(sz[v]&1)
 dp[u][2]^=a[u]^dp[v][2];

2026/01/14 05:22 5/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 else
 dp[u][2]^=dp[v][2];
 }
 }
}
vector<pair<int,int> > c[MAXV];
LL ans[MAXN][3];
int main(){
 int n=read_int(),q=read_int();
 _rep(i,1,n)
 a0[i]=read_int();
 _rep(i,2,n){
 int f=read_int(),s=read_int();
 Insert(f,i,s);
 }
 _for(i,0,q){
 int d=read_int(),u=read_int();
 c[d].push_back(make_pair(i,u));
 }
 _for(d,0,MAXV){
 _rep(i,1,n)
 a[i]=a0[i]+i*d;
 dfs(1);
 for(pair<int,int> t:c[d]){
 _for(j,0,3)
 ans[t.first][j]=dp[t.second][j];
 }
 }
 _for(i,0,q){
 space(ans[i][0]);
 space(ans[i][1]);
 enter(ans[i][2]);
 }
 return 0;
}

F. Finding Points

题意

给定一个凸包，点按照逆时针给出，然后求凸包内一点，想要这个点与这个凸多边形相邻点组成的 n 个
角的最小值最大，求这个最大值。 $(4≤n≤100)$

题解

赛场上两分钟出思路，然后看通过率⋯感觉是不是有坑就没敢写⋯赛后听说改数据了⋯血亏！

显然要二分（废话）。

Last
update:
2021/08/04
19:19

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1628075951

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

然后对于每一组相邻的点，这个点和这两个点组成的角大于某个角，则这个点一定在这两个点组成的大弓
形内，根据圆周角求 n 个圆看面积交即可，然后比赛的时候猜到会有点跑到凸包外面的情况，但是我不
会写圆的交再交凸包，这也是我怂了的原因之一，谁知道改数据嘛！

所以就是个板子题⋯

int N;
Point ppx[110];
int main() {
 scanf("%d",&C.n);
 N=C.n;
 for(int i=0;i<C.n;i++) {
 ppx[i].input();
 }
 ppx[C.n]=ppx[0];
 double l=eps,r=2.0*acos(-1)/N;
 while(r-l>1e-15) {
 double mid=(l+r)/2;
 for (int i=0;i<C.n;i++) {
 C.c[i].r=(ppx[i].distance(ppx[i+1])/2/sin(mid));
 double dtmp=C.c[i].r*cos(mid);
 Point ptmp=(ppx[i]+ppx[i+1])/2;
 Point pptmp=(ppx[i]-ptmp);
 pptmp=pptmp.rotright();
 pptmp=pptmp.trunc(dtmp);
 ptmp=ptmp+pptmp;
 C.c[i].p=ptmp;
 }
 C.getarea();
 if(C.ans[C.n]>1e-20)l=mid;
 else r=mid;
 }
 printf("%.20lf\n",l*180/pi);
 return 0;
}

G. Greater Integer, Better LCM

题意

给一个大数的质因数分解形式，设为 c ，并给出 a 和 b ，求最小的 $x+y$ ，使得
$lcm(a+x,b+y)=c$ 。 $(1≤n≤18)$ 代表质因子个数 ，保证因子幂次和相加不超过 18 ，
$a,b,c≤10^{32}$ 。

题解

类似于数位 dp 。我们对每一个质因子进行枚举幂次，并且状压，位为 1 代表这一个因子的幂次取满，

2026/01/14 05:22 7/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

不取满为 0 ， $dp[con]$ 代表这个压缩状态下的相对于 b 的最小代价，也就是 b 最少要补多少才
能到这个状态。

于是我们跑出初始每个状态下的最小代价，但是还需要处理 a 。我们把每一个末状态放进 vec 里，然
后看哪些比 a 大，代价是存的 v 值减 a ，剩下至少需要满足 $(1<<n)-1-con$ 的状态，于是我们需
要找一个无后效性的求状态数组的方法，就是让 dp 数组变成至少满足这个状态的最小代价。再处理一
下就好了

#include <bits/stdc++.h>
using namespace std;
#define ll __int128

inline void scan(ll &X) {
 X = 0;
 int w=0;
 char ch=0;
 while(!isdigit(ch)) {
 w|=ch=='-';
 ch=getchar();
 }
 while(isdigit(ch)) X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
 if (w) X = -X;
}
void print(ll x) {
 if (!x) return ;
 if (x < 0) putchar('-'),x = -x;
 print(x / 10);
 putchar(x % 10 + '0');
}

ll n,p[110],q[110],a,b;
ll dp[270000];
vector<pair<ll,int> > d;

void dfs(ll pos,ll value,int con) {
 if(pos==n) {
 d.push_back(make_pair(value,con));
 if(value>=b) dp[con]=value-b;
 return;
 }
 for(int i=0;i<=q[pos];i++) {
 dfs(pos+1,value,(i==q[pos])?(con|(1<<pos)):con);
 value=value*p[pos];
 }
}

int main() {
 memset(dp,0x3f3f3f3f,sizeof(dp));
 scan(n);
 for(int i=0;i<n;i++) scan(p[i]),scan(q[i]);
 scan(a);

Last
update:
2021/08/04
19:19

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1628075951

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

 scan(b);
 dfs(0,1,0);
 for(int i=0;i<n;i++) {
 for(int j=0;j<(1<<n);j++) {
 if(!(j&(1<<i))) dp[j]=min(dp[j],dp[j+(1<<i)]);
 }
 }
 ll ans=1e36;
 for (int i=0;i<d.size();i++) {
 pair<ll,int> x=d[i];
 if (x.first>=a) ans=min(ans,x.first-a+dp[(1<<n)-1-x.second]);
 }
 if(ans) print(ans);
 else puts("0");
 return 0;
}

被吊打的标算

考虑枚举 $S=\{p_1,p_2\cdots p_n\}$ 的所有子集。

对每个子集 $T=\{a_1,a_2\cdots a_i\}$，强制令 x 取 $\{p_1,p_2\cdots p_n\}-T$ 的每个素因子的最高次
幂，强制令 y 取 T 的每个素因子的最高次幂。

这样，就消除了 $\text{lcm}(x,y)=c$ 的限制，接下来分别考虑 $x\ge a,y\ge b$ 的限制。

不难发现 x 在 $a_1,a_2\cdots a_i$ 的幂次都是自由的，设 $x=t\cfrac
{c}{a_1^{q_1}a_2^{q_2}\cdots a_i^{q_i}}$，因此需要找到最小的 $t\mid
a_1^{q_1}a_2^{q_2}\cdots a_i^{q_i}$，且 $x\ge a$。

一种暴力解法为直接枚举 $a_1^{q_1}a_2^{q_2}\cdots a_i^{q_i}$ 的所有因子，最坏情况下 c 有
n 个因子，每个因子幂次均为 1。

此时时间复杂度等价于子集枚举套子集枚举的时间复杂度，可以认为是

$$ \sum_{i=0}^n {n\choose i}2^i=(1+2)^n $$

考虑一个优化，将 $a_1^{q_1}a_2^{q_2}\cdots a_i^{q_i}$ 平均分成两个序列，每个序列枚举因子，对
一个序列的因子进行排序，然后另一个序列进行二分查找。

这样里层子集枚举的复杂度优化为 $O\left(n{\sqrt 2}^n\right)$，总时间复杂度为

$$ \sum_{i=0}^n {n\choose i}i{\sqrt 2}^i=(1+\sqrt 2)^{n+1} $$

const int MAXN=18;
int n,p[MAXN],q[MAXN];
LL A[1<<MAXN],B[1<<MAXN];
LL vec1[1<<MAXN],vec2[1<<MAXN];
vector<pair<int,int> > d;
int cal(int l,int r,LL *vec){

2026/01/14 05:22 9/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 int n=0;
 vec[n++]=1;
 _for(i,l,r){
 int last=n;
 LL x=1;
 _for(j,0,d[i].second){
 x*=d[i].first;
 _for(k,0,last)
 vec[n++]=vec[k]*x;
 }
 }
 return n;
}
void solve(LL v,LL *ans){
 _for(i,0,1<<n){
 LL base=1;
 d.clear();
 _for(j,0,n){
 if(i&(1<<j))
 d.push_back(make_pair(p[j],q[j]));
 else{
 _for(k,0,q[j])
 base*=p[j];
 }
 }
 int n1=cal(0,d.size()/2,vec1);
 int n2=cal(d.size()/2,d.size(),vec2);
 sort(vec1,vec1+n1);
 ans[i]=1e32;
 _for(j,0,n2){
 vec2[j]*=base;
 int pos=lower_bound(vec1,vec1+n1,(v+vec2[j]-1)/vec2[j])-vec1;
 if(pos!=n1)
 ans[i]=min(ans[i],vec1[pos]*vec2[j]);
 }
 }
}
int main(){
 n=read_int();
 _for(i,0,n){
 p[i]=read_int();
 q[i]=read_int();
 }
 LL a=read_LL(),b=read_LL();
 solve(a,A);
 solve(b,B);
 LL ans=1e32;
 int S=(1<<n)-1;
 _for(i,0,1<<n)
 ans=min(ans,A[i]+B[S^i]-a-b);
 enter(ans);

Last
update:
2021/08/04
19:19

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1628075951

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

 return 0;
}

I. Interval Queries

题意

给定一个长度为 n 的序列 A，接下来有 q 个询问。每次询问给定 l,r,k，求

$$ \sum_{i=0}^{k-1}f(l-i,r+i)(n+1)^i $$

其中 f 定义如下

$$ f(l,r)=\max(\{k|\exists x\forall i(0\le i\le k-1\to \exists j(l\le j\le r,a_j=x+i))\}) $$

题解

考虑回滚莫队处理询问，难点在于怎么维护最大的 k。

实际上，这等价于维护数轴上的最长连续线段。可以令 $\text{vl}(x)$​​ 表示以数 x​​ 为左端点的线段在数
轴上的右端点。

$\text{vr}(x)$​ 表示以数 x​ 为右端点的线段在数轴上的左端点。于是只需要保证每条线段的两个端点的
vl,vr 正确性即可，不难 $O(1)$ 维护。

时间复杂度 $O\left(n\sqrt q+\sum k\right)$。

const int MAXN=1e5+5,mod=998244353;
int blk_sz,a[MAXN];
struct query{
 int l,r,k,idx;
 bool operator < (const query &b)const{
 if(l/blk_sz!=b.l/blk_sz)return l<b.l;
 return r<b.r;
 }
}opt[MAXN];
struct node{
 int p1,v1,p2,v2,ans;
}st[MAXN];
int curlen,vis[MAXN],vl[MAXN],vr[MAXN],tp;
void add(int v){
 if(vis[v]++)return;
 int l=vis[v-1]?vl[v-1]:v;
 int r=vis[v+1]?vr[v+1]:v;
 st[++tp]=node{l,vr[l],r,vl[r],curlen};
 vr[l]=r;
 vl[r]=l;

2026/01/14 05:22 11/12 补题情况

CVBB ACM Team - https://wiki.cvbbacm.com/

 curlen=max(curlen,r-l+1);
}
void del(int v){
 if(--vis[v])return;
 vr[st[tp].p1]=st[tp].v1;
 vl[st[tp].p2]=st[tp].v2;
 curlen=st[tp].ans;
 tp--;
}
int solve(int l,int r,int k,int n){
 int ans=curlen,base=1;
 _for(i,1,k){
 add(a[l-i]);
 add(a[r+i]);
 base=1LL*base*(n+1)%mod;
 ans=(ans+1LL*curlen*base)%mod;
 }
 for(int i=k-1;i;i--){
 del(a[r+i]);
 del(a[l-i]);
 }
 return ans;
}
int ans[MAXN];
int main()
{
 int n=read_int(),q=read_int();
 _rep(i,1,n)
 a[i]=read_int();
 _for(i,0,q){
 int l=read_int(),r=read_int(),k=read_int();
 opt[i]=query{l,r,k,i};
 }
 blk_sz=n/sqrt(q)+1;
 sort(opt,opt+q);
 _for(i,0,q){
 if(opt[i].l/blk_sz==opt[i].r/blk_sz){
 _rep(j,opt[i].l,opt[i].r)
 add(a[j]);
 ans[opt[i].idx]=solve(opt[i].l,opt[i].r,opt[i].k,n);
 for(int j=opt[i].r;j>=opt[i].l;j--)
 del(a[j]);
 }
 }
 int lef=1,rig=0,lst=-1;
 _for(i,0,q){
 if(opt[i].l/blk_sz!=opt[i].r/blk_sz){
 if(opt[i].l/blk_sz!=lst){
 while(lef<=rig)del(a[rig--]);
 lst=opt[i].l/blk_sz;
 rig=min(lst*blk_sz+blk_sz-1,n);

Last
update:
2021/08/04
19:19

2020-2021:teams:legal_string:组队训练
比赛记录:contest9 https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1628075951

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:22

 lef=rig+1;
 }
 while(rig<opt[i].r)add(a[++rig]);
 int tlef=lef;
 while(tlef>opt[i].l)add(a[--tlef]);
 ans[opt[i].idx]=solve(opt[i].l,opt[i].r,opt[i].k,n);
 while(tlef<lef)del(a[tlef++]);
 }
 }
 _for(i,0,q)enter(ans[i]);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1628075951

Last update: 2021/08/04 19:19

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:%E7%BB%84%E9%98%9F%E8%AE%AD%E7%BB%83%E6%AF%94%E8%B5%9B%E8%AE%B0%E5%BD%95:contest9&rev=1628075951

	补题情况
	题解
	C. Cheating and Stealing
	题意
	题解

	E. Eert Esiwtib
	题意
	题解

	F. Finding Points
	题意
	题解

	G. Greater Integer, Better LCM
	题意
	题解
	被吊打的标算

	I. Interval Queries
	题意
	题解

