
2026/01/14 02:44 1/5 可持久化平衡树

CVBB ACM Team - https://wiki.cvbbacm.com/

可持久化平衡树

算法简介

一种可以维护历史版本的平衡树，时间复杂度和空间复杂度均为 $O\left(m\log n\right)$。

算法思想

使用类似可持久化线段树的方法继承历史版本，但大部分平衡树都自带旋转操作，节点的父子关系会发生，
不利于可持久化。

于是考虑使用 fhq treap 进行可持久化。

fhq treap 的核心操作为 split 和 merge，所以考虑 split 和
merge 时动态开点即可。

关于 merge 操作是否需要动态开点存在争议。事实上，fhq treap 的 split 操
作会提前为 merge 操作开点，但考虑下面代码

void erase(int &root,int p,int v){
 int lef,mid,rig;
 split(p,lef,rig,v);
 split(lef,lef,mid,v-1);
 merge(mid,node[mid].ch[0],node[mid].ch[1]);
 merge(lef,lef,mid);
 merge(root,lef,rig);
}

我们会发现 merge(mid,node[mid].ch[0],node[mid].ch[1]); 语句并没有 split 操作为
其开点，这将导致错误。

解决方案为所有相同关键字的节点共用一个位置，或者为 merge 操作开点。考虑到前者编程较
为复杂，这里选择后者。

需要注意的是，在保证关键字唯一或维护序列时 merge 操作不需要开点。

算法模板

集合维护版本

洛谷p3835

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>

https://www.luogu.com.cn/problem/P3835
https://www.luogu.com.cn/problem/P3835

Last
update:
2020/07/08
19:38

2020-2021:teams:legal_string:jxm2001:
可持久化数据结构_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%8F%AF%E6%8C%81%E4%B9%85%E5%8C%96%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84_2&rev=1594208283

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:44

#include <string>
#include <sstream>
#include <cstring>
#include <cctype>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <ctime>
#include <cassert>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline LL read_LL(){
 LL t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline char get_char(){
 char c=getchar();
 while(c==' '||c=='\n'||c=='\r')c=getchar();
 return c;
}
inline void write(LL x){
 register char c[21],len=0;
 if(!x)return putchar('0'),void();
 if(x<0)x=-x,putchar('-');
 while(x)c[++len]=x%10,x/=10;
 while(len)putchar(c[len--]+48);
}
inline void space(LL x){write(x),putchar(' ');}
inline void enter(LL x){write(x),putchar('\n');}
const int MAXN=5e5+5,MAXM=40,Inf=0x7fffffff;
int root[MAXN];
struct fhq_treap{
 struct Node{
 int val,r,sz,ch[2];
 }node[MAXN*MAXM];
 int tot;

2026/01/14 02:44 3/5 可持久化平衡树

CVBB ACM Team - https://wiki.cvbbacm.com/

 int Copy(int k){
 node[++tot]=node[k];
 return tot;
 }
 int New(int v){
 int x=++tot;
node[x].val=v,node[x].r=rand(),node[x].sz=1,node[x].ch[0]=node[x].ch[1]=0;
 return x;
 }
 void pushup(int
k){node[k].sz=node[node[k].ch[0]].sz+node[node[k].ch[1]].sz+1;}
 void split(int k,int &k1,int &k2,int v){
 if(!k) return k1=k2=0,void();
 if(node[k].val<=v){
 k1=Copy(k);split(node[k].ch[1],node[k1].ch[1],k2,v);pushup(k1);
 }else{
 k2=Copy(k);split(node[k].ch[0],k1,node[k2].ch[0],v);pushup(k2);
 }
 }
 void merge(int &k,int k1,int k2){
 if(!k1||!k2)return k=k1|k2,void();
 if(node[k1].r>node[k2].r){
 k=Copy(k1);merge(node[k].ch[1],node[k1].ch[1],k2);pushup(k);
 }else{
 k=Copy(k2);merge(node[k].ch[0],k1,node[k2].ch[0]);pushup(k);
 }
 }
 void insert(int &root,int p,int v){
 int lef,rig;
 split(p,lef,rig,v);
 merge(lef,lef,New(v));
 merge(root,lef,rig);
 }
 void erase(int &root,int p,int v){
 int lef,mid,rig;
 split(p,lef,rig,v);
 split(lef,lef,mid,v-1);
 merge(mid,node[mid].ch[0],node[mid].ch[1]);
 merge(lef,lef,mid);
 merge(root,lef,rig);
 }
 int rank(int root,int v){
 int pos=root,ans=0;
 while(true){
 if(!pos)return ans+1;
if(node[pos].val<v)ans+=node[node[pos].ch[0]].sz+1,pos=node[pos].ch[1];
 else pos=node[pos].ch[0];
 }
 }
 int kth(int root,int rk){
 int pos=root;

Last
update:
2020/07/08
19:38

2020-2021:teams:legal_string:jxm2001:
可持久化数据结构_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%8F%AF%E6%8C%81%E4%B9%85%E5%8C%96%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84_2&rev=1594208283

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:44

 while(true){
 if(rk==node[node[pos].ch[0]].sz+1)return node[pos].val;
 else if(rk<node[node[pos].ch[0]].sz+1)pos=node[pos].ch[0];
 else rk-=node[node[pos].ch[0]].sz+1,pos=node[pos].ch[1];
 }
 }
 int pre(int root,int v){
 int pos=root,ans=-Inf;
 while(pos){
 if(node[pos].val>=v)pos=node[pos].ch[0];
 else ans=max(ans,node[pos].val),pos=node[pos].ch[1];
 }
 return ans;
 }
 int suf(int root,int v){
 int pos=root,ans=Inf;
 while(pos){
 if(node[pos].val<=v)pos=node[pos].ch[1];
 else ans=min(ans,node[pos].val),pos=node[pos].ch[0];
 }
 return ans;
 }
}tree;
int main()
{
 int n=read_int(),v,opt,x;
 _rep(i,1,n){
 v=read_int(),opt=read_int(),x=read_int();
 switch(opt){
 case 1:
 tree.insert(root[i],root[v],x);
 break;
 case 2:
 tree.erase(root[i],root[v],x);
 break;
 case 3:
 enter(tree.rank(root[i]=root[v],x));
 break;
 case 4:
 enter(tree.kth(root[i]=root[v],x));
 break;
 case 5:
 enter(tree.pre(root[i]=root[v],x));
 break;
 case 6:
 enter(tree.suf(root[i]=root[v],x));
 break;
 }
 }
 return 0;

2026/01/14 02:44 5/5 可持久化平衡树

CVBB ACM Team - https://wiki.cvbbacm.com/

}

序列维护版本

洛谷p5055

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%8F%AF%E6%8C%81%E4%B9%85%E5%8C%96%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84_2&rev=1594208283

Last update: 2020/07/08 19:38

https://www.luogu.com.cn/problem/P5055
https://www.luogu.com.cn/problem/P5055
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%8F%AF%E6%8C%81%E4%B9%85%E5%8C%96%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84_2&rev=1594208283

	可持久化平衡树
	算法简介
	算法思想
	算法模板
	集合维护版本
	序列维护版本

