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图论 1

最短路

非负权边单源最短路

$\text{Dijkstra}$ 算法板子

时间复杂度 $O(m\log m)$。

template <typename T>
struct dijkstra{
    T dis[MAXN];
    bool vis[MAXN];
    priority_queue<pair<T,int>,vector<pair<T,int> >,greater<pair<T,int> >
>q;
    void solve(int src,int n){
        mem(vis,0);
        _rep(i,1,n)
        dis[i]=Inf;
        dis[src]=0;
        q.push(make_pair(dis[src],src));
        while(!q.empty()){
            pair<T,int> temp=q.top();q.pop();
            int u=temp.second;
            if(vis[u])
            continue;
            vis[u]=true;
            for(int i=head[u];i;i=edge[i].next){
                int v=edge[i].to;
                if(dis[v]>edge[i].w+dis[u]){
                    dis[v]=edge[i].w+dis[u];
                    q.push(make_pair(dis[v],v));
                }
            }
        }
    }
};

例题 1

洛谷p1462

题意

https://www.luogu.com.cn/problem/P1462
https://www.luogu.com.cn/problem/P1462
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给定 $n$ 个城市，$m$ 条边以及起点、终点。

要求选择一条路径，满足路径边权和不超过给定值，且路径上的最大点权最小。

题解

二分点权上界，跑 $\text{dijkstra}$ 时跳过点权大于该上界的点，计算起点到终点的边权和最短路，如果
不超过给定值则更新答案。

时间复杂度 $O(n\log m\log v)$

const int MAXN=1e4+5,MAXM=5e4+5,Inf=2e9;
struct Edge{
    int to,w,next;
}edge[MAXM<<1];
int head[MAXN],edge_cnt,val[MAXN],limit;
void Insert(int u,int v,int w){
    edge[++edge_cnt].next=head[u];
    edge[edge_cnt].to=v;edge[edge_cnt].w=w;
    head[u]=edge_cnt;
}
template <typename T>
struct dijkstra{
    T dis[MAXN];
    bool vis[MAXN];
    priority_queue<pair<T,int>,vector<pair<T,int> >,greater<pair<T,int> >
>q;
    void solve(int src,int n){
        mem(vis,0);
        _rep(i,1,n)
        dis[i]=Inf;
        dis[src]=0;
        q.push(make_pair(dis[src],src));
        while(!q.empty()){
            pair<T,int> temp=q.top();q.pop();
            int u=temp.second;
            if(vis[u])
            continue;
            vis[u]=true;
            for(int i=head[u];i;i=edge[i].next){
                int v=edge[i].to;
                if(val[v]>limit)
                continue;
                if(dis[v]>edge[i].w+dis[u]){
                    dis[v]=edge[i].w+dis[u];
                    q.push(make_pair(dis[v],v));
                }
            }
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        }
    }
};
dijkstra<LL> dj;
int main()
{
    int n=read_int(),m=read_int(),b=read_int(),u,v,w,lef=Inf,rig=0;
    _rep(i,1,n){
        val[i]=read_int();
        lef=min(val[i],lef);
        rig=max(val[i],rig);
    }
    while(m--){
        u=read_int(),v=read_int(),w=read_int();
        Insert(u,v,w);
        Insert(v,u,w);
    }
    int mid,ans=-1;
    while(lef<=rig){
        mid=lef+rig>>1;
        limit=mid;
        dj.solve(1,n);
        if(dj.dis[n]<=b){
            ans=mid;
            rig=mid-1;
        }
        else
        lef=mid+1;
    }
    if(ans>=0)
    enter(ans);
    else
    puts("AFK");
    return 0;
}

例题 2

牛客暑期多校(第二场) I 题

题意

给定一个区间，可执行一下操作：

$[x,y]\to [x+1,y](x\lt y)$1.
$[x,y]\to [x,y-1](x\lt y)$2.
$[x,y]\to [x-1,y](x\gt 1)$3.
$[x,y]\to [x,y+1](y\lt n)$4.

https://ac.nowcoder.com/acm/contest/5667/I
https://ac.nowcoder.com/acm/contest/5667/I
https://ac.nowcoder.com/acm/contest/5667/I
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给定一些第 $1,2$ 类操作的禁令，每条禁令花费 $c_i$。

考虑选择从中选择部分禁令，使得区间 $[1,n]$ 无法变换为 $[x,x](1\lt x\lt n)$，且总花费最少。

题解

考虑建立 $L-R$ 坐标系，题目等价于不能从 $(1,n)$ 跑到直线 $L=R$。把每个网格当成节点，每条禁令连
接两个网格。

取最右边为超级源点，最上边为超级汇点，跑最短路算法即可。

const int MAXN=505*505;
const LL Inf=1e12;
struct Edge{
    int to,w,next;
}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w){
    edge[++edge_cnt]=Edge{v,w,head[u]};
    head[u]=edge_cnt;
}
template <typename T>
struct dijkstra{
    T dis[MAXN];
    bool vis[MAXN];
    priority_queue<pair<T,int>,vector<pair<T,int> >,greater<pair<T,int> >
>q;
    void solve(int src,int n){
        mem(vis,0);
        _rep(i,1,n)
        dis[i]=Inf;
        dis[src]=0;
        q.push(make_pair(dis[src],src));
        while(!q.empty()){
            pair<T,int> temp=q.top();q.pop();
            int u=temp.second;
            if(vis[u])
            continue;
            vis[u]=true;
            for(int i=head[u];i;i=edge[i].next){
                int v=edge[i].to;
                if(dis[v]>edge[i].w+dis[u]){
                    dis[v]=edge[i].w+dis[u];
                    q.push(make_pair(dis[v],v));
                }
            }
        }
    }
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};
dijkstra<LL> solver;
int n,m;
int Id(int r,int c){return (r-1)*(n-1)+c;}
int main()
{
    n=read_int(),m=read_int();
    int s=Id(n-1,n-1)+1,t=s+1;
    int r,c,w,id1,id2;char d;
    while(m--){
        c=read_int(),r=read_int(),d=get_char(),w=read_int();
        id1=Id(r-1,c);
        if(d=='L'){
            if(r==n)
            id2=t;
            else
            id2=Id(r,c);
        }
        else{
            if(c==1)
            id2=s;
            else
            id2=Id(r-1,c-1);
        }
        Insert(id1,id2,w);Insert(id2,id1,w);
    }
    solver.solve(s,t);
    if(solver.dis[t]==Inf)
    puts("-1");
    else
    enter(solver.dis[t]);
    return 0;
}

带负权边单源最短路

$\text{SPFA}$ 算法板子

平均时间复杂度 $O(Km)$，最坏时间复杂度 $O(nm)$。

template <typename T>
struct SPFA{
    T dis[MAXN];
    int len[MAXN];
    bool inque[MAXN];
    bool solve(int src,int n){
        queue<int>q;
        mem(inque,0);mem(len,0);
        _rep(i,1,n)
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        dis[i]=Inf;
        dis[src]=0;len[src]=1;
        q.push(src);
        inque[src]=true;
        while(!q.empty()){
            int u=q.front();q.pop();
            inque[u]=false;
            for(int i=head[u];i;i=edge[i].next){
                int v=edge[i].to;
                if(dis[v]>dis[u]+edge[i].w){
                    dis[v]=dis[u]+edge[i].w;
                    len[v]=len[u]+1;
                    if(len[v]>n)
                    return false;
                    if(!inque[v]){
                        q.push(v);
                        inque[v]=true;
                    }
                }
            }
        }
        return true;
    }
};

例题

洛谷p5960

题意

解方程 $$ \left \{ \begin{array}{l} x_{a1}-x_{b1}\le y_1\\ x_{a2}-x_{b2}\le y_2\\ \cdots\\ x_{am}-
x_{bm}\le y_m \end{array} \right. $$

题解

将 $x_j-x_i\le y$ 移项，得 $x_j\le x_i+y$，发现该式与单源最短路的三角不等式 $\text{dist}_j\le
\text{dist}_i+\text{w}_{i\to j}$ 相似。

考虑添加超级源点 $x_0$，$x_0$ 向所有其他点连一条权为 $0$ (事实上边权数值无特殊要求，边权相当于
为所有解加上一个初始值)的单向边。

然后跑最短路算法即可，解得 $x_i=\text{dist}_i+k$ 为方程的一组可行解。

const int MAXN=1e4+5,MAXM=5e5+5,Inf=1e9;
struct Edge{

https://www.luogu.com.cn/problem/P5960
https://www.luogu.com.cn/problem/P5960
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    int to,w,next;
}edge[MAXM<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w){
    edge[++edge_cnt].next=head[u];
    edge[edge_cnt].to=v;edge[edge_cnt].w=w;
    head[u]=edge_cnt;
}
template <typename T>
struct SPFA{
    T dis[MAXN];
    int len[MAXN];
    bool inque[MAXN];
    bool solve(int src,int n){
        queue<int>q;
        mem(inque,0);mem(len,0);
        _rep(i,1,n)
        dis[i]=Inf;
        dis[src]=0;len[src]=1;
        q.push(src);
        inque[src]=true;
        while(!q.empty()){
            int u=q.front();q.pop();
            inque[u]=false;
            for(int i=head[u];i;i=edge[i].next){
                int v=edge[i].to;
                if(dis[v]>dis[u]+edge[i].w){
                    dis[v]=dis[u]+edge[i].w;
                    len[v]=len[u]+1;
                    if(len[v]>n)
                    return false;
                    if(!inque[v]){
                        q.push(v);
                        inque[v]=true;
                    }
                }
            }
        }
        return true;
    }
};
SPFA<int> spfa;
int main()
{
    int n=read_int(),m=read_int(),u,v,w;
    _rep(i,1,n)Insert(n+1,i,0);
    while(m--){
        u=read_int(),v=read_int(),w=read_int();
        Insert(v,u,w);
    }
    if(spfa.solve(n+1,n+1)){
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        _rep(i,1,n){
            if(i>1)putchar(' ');
            write(spfa.dis[i]);
        }
    }
    else
    puts("NO");
    return 0;
}

带负权边全源最短路

$\text{Floyd}$ 算法板子

时间复杂度 $O(n^3)$，无法判断负环。

int n,dis[MAXN][MAXN];
void Floyd(){
    _for(i,0,n)
    _for(j,0,n)
    dis[i][j]=Inf;
    _for(i,0,n)
    dis[i][i]=0;
    _for(k,0,n)
    _for(i,0,n)
    _for(j,0,n)
    dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}

例题

洛谷p1119

题意

给定 $n$ 个城市，$m$ 条边，每个城市在第 $t_i$ 天起才加入点集(保证 $t_i$ 升序)。

$q$ 个询问，每次询问第 $t$ 天的 $dis(i,j)$，保证询问的 $t$ 升序。

题解

考虑 $\text{Floyd}$ 算法本质其实是 $\text{dp}$。

$dis[k][i][j]$ 表示只使用前 $k$ 个点作为中转点时 $i$、$j$ 间的最短路，可以用滚动数组省去一维。

https://www.luogu.com.cn/problem/P1119
https://www.luogu.com.cn/problem/P1119
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所以本题只需要按时间更新即可。

const int MAXN=200+5,Inf=1e9;
int dis[MAXN][MAXN],t[MAXN];
int main()
{
    int n=read_int(),m=read_int(),u,v,w;
    _for(i,0,n)
    t[i]=read_int();
    _for(i,0,n)
    _for(j,0,n)
    dis[i][j]=Inf;
    while(m--){
        u=read_int(),v=read_int(),w=read_int();
        dis[u][v]=dis[v][u]=w;
    }
    _for(i,0,n)
    dis[i][i]=0;
    int q=read_int(),pos=0,temp;
    while(q--){
        u=read_int(),v=read_int(),temp=read_int();
        while(t[pos]<=temp&&pos<n){
            _for(i,0,n)
            _for(j,0,n)
            dis[i][j]=min(dis[i][j],dis[i][pos]+dis[pos][j]);
            pos++;
        }
        if(t[u]>temp||t[v]>temp||dis[u][v]==Inf)
        enter(-1);
        else
        enter(dis[u][v]);
    }
    return 0;
}

$\text{Johnson}$ 算法板子

洛谷p5905

加入虚拟节点，虚拟节点向每个点连一条权值为 $0$ 的单向边。

跑一遍 $\text{SPFA}$，得到每个点到虚拟节点的距离，记该距离为每个点的势能 $h_i$。

将原图中的所有边权修改 $w+h_u-h_v$，则新图的每条路径 $s\to t$ 的长度为

\begin{equation}(w_{s,p1}+h_s-h_{p1})+(w_{p1,p2}+h_{p1}-h_{p2})+\cdots+(w_{pk,t}+h_{pk}-
h_t)=w_{s,p1}+w_{p1,p2}+\cdots+w_{pk,t}+h_s-h_t\end{equation}

所以新图的最短路与原图等效。

https://www.luogu.com.cn/problem/P5905
https://www.luogu.com.cn/problem/P5905
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另外，根据 $\text{SPFA}$ 结果，有 $h_v\le h_u+w_{u,v}$，即 $w_{u,v}+h_u-h_v\ge 0$。

由于新图所有边权非负，所以可以跑 $n$ 轮 $\text{Dijkstra}$ 求出全源最短路。

时间复杂度 $O(nm\log m)$，带负环判断。

const int MAXN=3e3+5,MAXM=9e3+5,Inf=1e9;
struct Edge{
    int to,w,next;
}edge[MAXM];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w){
    edge[++edge_cnt].next=head[u];
    edge[edge_cnt].to=v;edge[edge_cnt].w=w;
    head[u]=edge_cnt;
}
template <typename T>
struct SPFA{
    T dis[MAXN];
    int len[MAXN];
    bool inque[MAXN];
    bool solve(int src,int n){
        queue<int>q;
        mem(inque,0);mem(len,0);
        _rep(i,1,n)
        dis[i]=Inf;
        dis[src]=0;len[src]=1;
        q.push(src);
        inque[src]=true;
        while(!q.empty()){
            int u=q.front();q.pop();
            inque[u]=false;
            for(int i=head[u];i;i=edge[i].next){
                int v=edge[i].to;
                if(dis[v]>dis[u]+edge[i].w){
                    dis[v]=dis[u]+edge[i].w;
                    len[v]=len[u]+1;
                    if(len[v]>n)
                    return false;
                    if(!inque[v]){
                        q.push(v);
                        inque[v]=true;
                    }
                }
            }
        }
        return true;
    }
};
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template <typename T>
struct dijkstra{
    T dis[MAXN];
    bool vis[MAXN];
    priority_queue<pair<T,int>,vector<pair<T,int> >,greater<pair<T,int> >
>q;
    void solve(int src,int n){
        mem(vis,0);
        _rep(i,1,n)
        dis[i]=Inf;
        dis[src]=0;
        q.push(make_pair(dis[src],src));
        while(!q.empty()){
            pair<T,int> temp=q.top();q.pop();
            int u=temp.second;
            if(vis[u])
            continue;
            vis[u]=true;
            for(int i=head[u];i;i=edge[i].next){
                int v=edge[i].to;
                if(dis[v]>edge[i].w+dis[u]){
                    dis[v]=edge[i].w+dis[u];
                    q.push(make_pair(dis[v],v));
                }
            }
        }
    }
};
SPFA<int> spfa;
dijkstra<int> dj;
int main()
{
    int n=read_int(),m=read_int(),u,v,w;
    _for(i,0,m){
        u=read_int(),v=read_int(),w=read_int();
        Insert(u,v,w);
    }
    _rep(i,1,n)
    Insert(n+1,i,0);
    if(!spfa.solve(n+1,n+1)){
        puts("-1");
        return 0;
    }
    _rep(u,1,n){
        for(int i=head[u];i;i=edge[i].next){
            int v=edge[i].to;
            edge[i].w+=spfa.dis[u]-spfa.dis[v];
        }
    }
    _rep(i,1,n){
        LL ans=0;
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        dj.solve(i,n);
        _rep(j,1,n) if(dj.dis[j]!=Inf)
        dj.dis[j]-=spfa.dis[i]-spfa.dis[j];
        _rep(j,1,n)
        ans+=1LL*j*dj.dis[j];
        enter(ans);
    }
    return 0;
}

算法练习

习题一

UVA1416

题意

给定 $n$ 个点，$m$ 条正权边，令 $c$ 等于每对节点的最短路长度之和。

要求删除一条边后使新的 $c$ 值最大。(不连通的两点最短路视为 $L$)

数据范围 $n\le 100,m\le 1000,L\le 10^8$

题解

对每个点跑 $\text{Dijkstra}$ 算法得到以该点为源点的最短路树。

易知如果删除的边不属于该最短路树则对该点贡献无影响。

否则删除该边后重新跑一遍 $\text{Dijkstra}$ 并计算贡献，注意如果存在重边需要用第二短的边替代该
边。

暴力枚举每一条边并计算答案即可。

由于每个点最短路树只有 $n-1$ 条边，所以每个点最多跑 $n-1$ 次 $\text{Dijkstra}$。

时间复杂度 $O(n^2m\log m)$。

const int MAXN=105,MAXM=1005,Inf=1e9;
struct Edge{
    int from,to,w,next;
}edge[MAXM<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w){
    edge[++edge_cnt].next=head[u];

https://www.luogu.com.cn/problem/UVA1416
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    edge[edge_cnt].from=u;edge[edge_cnt].to=v;edge[edge_cnt].w=w;
    head[u]=edge_cnt;
}
template <typename T>
struct dijkstra{
    T dis[MAXN];
    int p[MAXN];
    bool vis[MAXN];
    priority_queue<pair<T,int>,vector<pair<T,int> >,greater<pair<T,int> >
>q;
    void solve(int src,int n){
        mem(vis,0);
        _rep(i,1,n)
        dis[i]=Inf;
        dis[src]=0;
        q.push(make_pair(dis[src],src));
        while(!q.empty()){
            pair<T,int> temp=q.top();q.pop();
            int u=temp.second;
            if(vis[u])
            continue;
            vis[u]=true;
            for(int i=head[u];i;i=edge[i].next){
                if(edge[i].w<0)
                continue;
                int v=edge[i].to;
                if(dis[v]>edge[i].w+dis[u]){
                    dis[v]=edge[i].w+dis[u];
                    p[v]=i;
                    q.push(make_pair(dis[v],v));
                }
            }
        }
    }
};
dijkstra<int> dj;
vector<int> edge_w[MAXN][MAXN];
bool tree_edge[MAXN][MAXN][MAXN];
int edge_id[MAXN][MAXN];
LL dis_sum[MAXN];
int n,m,L;
LL get_ans1(){
    LL ans=0;
    _rep(i,1,n){
        dis_sum[i]=0;
        dj.solve(i,n);
        _rep(j,1,n){
            if(i==j)
            continue;
            int u=edge[dj.p[j]].from,v=edge[dj.p[j]].to;
            tree_edge[i][u][v]=tree_edge[i][v][u]=true;
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            dis_sum[i]+=dj.dis[j]==Inf?L:dj.dis[j];
        }
        ans+=dis_sum[i];
    }
    return ans;
}
LL get_ans2(int u,int v){
    LL ans=0;
    _rep(i,1,n){
        if(!tree_edge[i][u][v])
        ans+=dis_sum[i];
        else{
            dj.solve(i,n);
            _rep(j,1,n)
            ans+=dj.dis[j]==Inf?L:dj.dis[j];
        }
    }
    return ans;
 
}
int main()
{
    while(~scanf("%d%d%d",&n,&m,&L)){
        edge_cnt=0;mem(head,0);
        mem(tree_edge,0);
        _rep(i,1,n)
        _rep(j,1,n)
        edge_w[i][j].clear();
        int u,v,w;
        while(m--){
            u=read_int();v=read_int();w=read_int();
            edge_w[u][v].push_back(w);edge_w[v][u].push_back(w);
        }
        _rep(i,1,n)
        _rep(j,i+1,n){
            if(edge_w[i][j].size()){
                sort(edge_w[i][j].begin(),edge_w[i][j].end());
                Insert(i,j,edge_w[i][j][0]);edge_id[i][j]=edge_cnt;
                Insert(j,i,edge_w[i][j][0]);edge_id[j][i]=edge_cnt;
            }
        }
        LL c1,c2;
        c1=c2=get_ans1();
        _rep(i,1,n)
        _rep(j,i+1,n){
            if(edge_w[i][j].size()){
edge[edge_id[i][j]].w=edge[edge_id[j][i]].w=edge_w[i][j].size()>1?edge_w[i]
[j][1]:-1;
                c2=max(c2,get_ans2(i,j));
edge[edge_id[i][j]].w=edge[edge_id[j][i]].w=edge_w[i][j][0];
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            }
        }
        space(c1);enter(c2);
    }
    return 0;
}

连通分量

无向图的割顶与桥

定义

若删除节点 $u$ 将导致无向图的连通分量增加，则称 $u$ 为无向图的割顶。

若删除边 $e$ 将导致无向图的连通分量增加，则称 $e$ 为无向图的桥。

算法思想

考虑 $\text{dfs}$ 过程中建树。如果某条边指向的节点是第一次访问，则该边为树边，否则为反向边。易
知，不同子树间不存在树边与反向边。

记 $\text{low}(u)$ 为 $u$ 及其后代不经过 $u$ 与 $fa_u$ 的树边能连回的最早祖先的 $\text{pre}$ 值。

顶点 $u$ 为割顶当且仅当 $u$ 为根节点且 $u$ 在树中有两个子节点或 $u$ 为非根节点且存在 $u$ 的一
个子节点 $v$ 满足 $\text{low}(v)\ge \text{dfs_id}(u)$。

另外若此时还有 $\text{low}(v)\gt \text{dfs_id}(u)$，则 $(u,v)$ 为桥。

只需要 $\text{dfs}$ 过程维护一下 $\text{low}$ 数组即可，需要从树边的贡献和反向边的贡献两方面考
虑，时间复杂度 $O(n+m)$。

int low[MAXN],dfs_id[MAXN],dfs_t;
bool iscut[MAXN];
void dfs(int u,int fa){
    low[u]=dfs_id[u]=++dfs_t;
    int child=0;
    for(int i=head[u];i;i=edge[i].next){
        int v=edge[i].to;
        if(v==fa)continue;
        if(!dfs_id[v]){//树边贡献
            dfs(v,u);
            low[u]=min(low[u],low[v]);
            if(low[v]>=dfs_id[u]&&u!=fa)
            iscut[u]=true;
            child++;
        }
        else
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        low[u]=min(low[u],dfs_id[v]);//反向边贡献
    }
    if(u==fa&&child>=2)//根节点特判
    iscut[u]=true;
}

无向图的双连通分量

定义

给定一个连通图，以下条件等价：

任意两点间至少存在两条点不重复的路径
任意两条边都至少可以找到一个包含它们的简单环。
图内部无割顶

若满足上述条件，则称该图是点-双连通的。对一个无向图，称点-双连通的极大子图为点-双连通分量。

类似的，给定一个连通图，以下条件等价：

任意两点间至少存在两条边不重复的路径
每条边都至少可以找到一个包含它的简单环。
图内部无桥

若满足上述条件，则称该图是边-双连通的。对一个无向图，称点-双连通的极大子图为边-双连通分量。

算法思想

对点-双连通分量，有如下性质：

每条边恰好属于一个点-双连通分量
任意两个双连通分量间最多有一个公共点，且该点为割顶
任意割顶至少属于两个不同的双连通分量

求点-双连通分量有两种方法，一种先一次 $\text{dfs}$ 求出割顶，再一次 $\text{dfs}$ 染色，染色过程
中不经过割顶。

第二种方法为每求出一个割顶，立刻处理该连通分量，下面给出第二种方法的板子，时间复杂度
$O(n+m)$。

注意，该算法会导致孤立点不被计入任意一个连通分量。

int low[MAXN],dfs_id[MAXN],dfs_t,bcc_id[MAXN],bcc_cnt;
vector<int> bcc[MAXN];
stack<pair<int,int> >Stack;
bool iscut[MAXN];
void dfs(int u,int fa){
    low[u]=dfs_id[u]=++dfs_t;
    int child=0;
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    for(int i=head[u];i;i=edge[i].next){
        int v=edge[i].to;
        if(v==fa)continue;
        if(!dfs_id[v]){
            Stack.push(make_pair(u,v));
            dfs(v,u);
            low[u]=min(low[u],low[v]);
            if(low[v]>=dfs_id[u]){
                iscut[u]=true;
                pair<int,int> temp;
                bcc[++bcc_cnt].clear();
                while(true){
                    temp=Stack.top();Stack.pop();
                    if(bcc_id[temp.first]!=bcc_cnt){
                        bcc_id[temp.first]=bcc_cnt;
                        bcc[bcc_cnt].push_back(temp.first);
                    }
                    if(bcc_id[temp.second]!=bcc_cnt){
                        bcc_id[temp.second]=bcc_cnt;
                        bcc[bcc_cnt].push_back(temp.second);
                    }
                    if(temp.first==u&&temp.second==v)
                    break;
                }
            }
            child++;
        }
        else if(dfs_id[v]<dfs_id[u]){
            Stack.push(make_pair(u,v));
            low[u]=min(low[u],dfs_id[v]);
        }
    }
    if(u==fa&&child<2)
    iscut[u]=false;
}
void find_bcc(int n){
    mem(dfs_id,0);
    mem(iscut,0);
    mem(bcc_id,0);
    dfs_t=bcc_cnt=0;
    _rep(i,1,n){
        if(!dfs_id[i])
        dfs(i,i);
    }
}

对边-双连通分量，有如下性质：

除了桥不属于任意一个边-双连通分量，其他每条边恰好属于一个点-双连通分量
任意两个双连通分量间无公共点和公共边
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求边-双连通分量有两种方法，与求点-双连通分量类似。一般考虑先一次 $\text{dfs}$ 求出桥，再一次
$\text{dfs}$ 染色，染色过程中不经过桥。

使用上述方法求边-双连通分量时需要注意标记桥时需要将双向边同时标记，如果只标记了双向边的某一条
边，染色过程中可能出现错误。

例题 1

洛谷p3225

题意

给定 $n$ 个点，$m$ 条边。要求选择若干点作为逃生点，使得删去任意一个点后任意其他点均能达到某个
逃生点。

输出最少需要选择的点数和选择最少的点数的方案数。

题解

考虑先求出所有点-双连通分量，记点-双连通分量的度为该点-双连通分量中的割点数。

易知若点-双连通分量的度等于 $0$，该点-双连通分量中必须设立两个逃生点，逃生点位置任意。

若点-双连通分量的度等于 $1$，该点-双连通分量中必须设立一个逃生点，逃生点不能是割点。

若点-双连通分量的度大于 $1$，则删去任意一个点后该点-双连通分量中仍然可以到达其他度为 $1$ 的点-
双连通分量，不需要设置逃生点。

若某个点为孤立点，需要额外设立一个逃生点。

const int MAXN=505,MAXM=505;
struct Edge{
    int to,next;
}edge[MAXM<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
    edge[++edge_cnt].next=head[u];
    edge[edge_cnt].to=v;
    head[u]=edge_cnt;
}
int low[MAXN],dfs_id[MAXN],dfs_t,bcc_id[MAXN],bcc_cnt;
vector<int> bcc[MAXN];
stack<pair<int,int> >Stack;
bool iscut[MAXN];
void dfs(int u,int fa){
    low[u]=dfs_id[u]=++dfs_t;
    int child=0;

https://www.luogu.com.cn/problem/P3225
https://www.luogu.com.cn/problem/P3225
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    for(int i=head[u];i;i=edge[i].next){
        int v=edge[i].to;
        if(v==fa)continue;
        if(!dfs_id[v]){
            Stack.push(make_pair(u,v));
            dfs(v,u);
            low[u]=min(low[u],low[v]);
            if(low[v]>=dfs_id[u]){
                iscut[u]=true;
                pair<int,int> temp;
                bcc[++bcc_cnt].clear();
                while(true){
                    temp=Stack.top();Stack.pop();
                    if(bcc_id[temp.first]!=bcc_cnt){
                        bcc_id[temp.first]=bcc_cnt;
                        bcc[bcc_cnt].push_back(temp.first);
                    }
                    if(bcc_id[temp.second]!=bcc_cnt){
                        bcc_id[temp.second]=bcc_cnt;
                        bcc[bcc_cnt].push_back(temp.second);
                    }
                    if(temp.first==u&&temp.second==v)
                    break;
                }
            }
            child++;
        }
        else if(dfs_id[v]<dfs_id[u]){
            Stack.push(make_pair(u,v));
            low[u]=min(low[u],dfs_id[v]);
        }
    }
    if(u==fa&&child<2)
    iscut[u]=false;
}
void find_bcc(int n){
    mem(dfs_id,0);
    mem(iscut,0);
    mem(bcc_id,0);
    dfs_t=bcc_cnt=0;
    _rep(i,1,n){
        if(!dfs_id[i])
        dfs(i,i);
    }
}
int main()
{
    int kase=0,n,m,u,v;
    while(m=read_int()){
        n=0,edge_cnt=0;
        mem(head,0);
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        while(m--){
            u=read_int(),v=read_int();
            n=max(n,u),n=max(n,v);
            Insert(u,v);
            Insert(v,u);
        }
        find_bcc(n);
        int ans1=0;
        unsigned long long ans2=1;
        _rep(i,1,bcc_cnt){
            int cnt=0;
            _for(j,0,bcc[i].size()){
                if(iscut[bcc[i][j]])
                cnt++;
            }
            if(cnt==1)
            ans1++,ans2*=bcc[i].size()-1;
            else if(cnt==0)
            ans1+=2,ans2*=bcc[i].size()*(bcc[i].size()-1)/2;
        }
        _rep(i,1,n){
            if(!bcc_id[i])
            ans1++;
        }
        printf("Case %d: %d %llu\n",++kase,ans1,ans2);
    }
    return 0;
}

例题 2

EDU92 G题

题意

给定 $n$ 个点 $m$ 条边的无向图，其中 $k$ 个点为特殊点，每个点有一个点权，每条边有一个边权。

要求给无向图的边定向，如果将某条边定向为单向边，则不需要支付费用。如果将某条边定向为双向边，
则需要支付等于该边边权的费用。

定义图中的某个点为满足当且仅当所有特殊点可以到达沿有向边到达该点，且如果某个边成为满点，则可
以获得等于该点点权的利润。

要求输出 $n$ 个数，表示如果第 $i$ 个点为满点能得到的最大收益，其中收益 $=$ 利润 $-$ 费用。

题解

https://codeforces.com/contest/1389/problem/G
https://codeforces.com/contest/1389/problem/G
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有结论：对边双连通分量，存在某种策略可以将无向边全部定向为单向边并可以得到强连通分量。

于是求出所有边双连通分量并缩点，得到一棵无根树，树上的边为原图的桥，接下来考虑树形
$\text{dp}$。

先考虑如何求出第 $1$ 个节点为满点时的最大收益。(这里及下文的节点均指缩点后的节点)

令第 $1$ 个节点为根节点，设 $\text{dp}(u)$ 为在第 $1$ 个节点为满点且为根节点的前提下 $u$ 是满点时
$u$ 所在子树利益的最大值。

首先 $\text{dp}(u)$ 的初值为 $u$ 缩点中所有点的点权和。接下来考虑状态转移，假设节点 $u$ 为满点，
考虑它的子节点 $v$。

如果所有特殊点都在子节点 $v$ 的子树中，则 $v$ 一定是满点且连一条 $v\to u$ 的单向边，于是
$\text{dp}(u)\gets \text{dp}(v)$。

如果所有特殊点都不在子节点 $v$ 的子树中，则贪心连一条 $u\to v$ 的单向边一定最优，于是
$\text{dp}(u)\gets \text{dp}(v)$。

除了上面两种特殊情况，则由于子节点 $v$ 的子树中存在特殊节点，且 $u$ 为满点，所以必须能从 $v$
走到 $u$。

于是要么 $v$ 连一条单向边到 $u$，这样 $v$ 不是满点，对 $u$ 无贡献。要么 $v,u$ 间连一条双向边，
于是贡献为 $dp(v)-w(u,v)$。

所以该情况下有状态转移方程 $dp(u)=\max(0,dp(v)-w(u,v))$。

根据上述方法，可以 $O(n)$ 求解第 $1$ 个节点为满点时的最大收益，接下来考虑换根 $\text{dp}$。

不断转移根，假设当前根为 $u$，$v$ 为 $u$ 的子节点。

于是先减去 $v$ 对 $u$ 的贡献，这样树被分成了以 $u$ 为根节点的树和以 $v$ 为根节点的树这两棵树。

然后考虑将 $u$ 节点转化为 $v$ 的子节点并计算贡献。

换根采用 $\text{dfs}$ 过程且需要回溯。总时间复杂度 $O(n)$。

const int MAXN=3e5+5;
struct Edge{
    int from,to,id,next;
}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int idx){
    edge[++edge_cnt]=Edge{u,v,idx,head[u]};
    head[u]=edge_cnt;
}
int low[MAXN],dfs_id[MAXN],dfs_t,bcc_id[MAXN],bcc_sp[MAXN],bcc_cnt;
bool is_bridge[MAXN];
LL bcc_v[MAXN],dp[MAXN],ans[MAXN];
vector<int> bcc[MAXN];
vector<pair<int,int> >g[MAXN];
int k,c[MAXN],node_sp[MAXN],edge_w[MAXN];
void dfs(int u,int fa){
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    low[u]=dfs_id[u]=++dfs_t;
    for(int i=head[u];i;i=edge[i].next){
        int v=edge[i].to;
        if(v==fa)continue;
        if(!dfs_id[v]){
            dfs(v,u);
            low[u]=min(low[u],low[v]);
            if(low[v]>dfs_id[u])
            is_bridge[edge[i].id]=true;
        }
        else
        low[u]=min(low[u],dfs_id[v]);
    }
}
void dfs_2(int u,int fa){
    bcc_id[u]=bcc_cnt;
    bcc_v[bcc_cnt]+=c[u];
    bcc_sp[bcc_cnt]+=node_sp[u];
    bcc[bcc_cnt].push_back(u);
    for(int i=head[u];i;i=edge[i].next){
        if(is_bridge[edge[i].id])continue;
        int v=edge[i].to;
        if(v==fa||bcc_id[v])continue;
        dfs_2(v,u);
    }
}
void get_bcc(int n){
    dfs(1,1);
    _rep(i,1,n){
        if(!bcc_id[i]){
            bcc_cnt++;
            dfs_2(i,i);
        }
    }
    _rep(i,1,edge_cnt){
        if(is_bridge[edge[i].id]){
            int u=bcc_id[edge[i].from],v=bcc_id[edge[i].to];
            g[u].push_back(make_pair(v,edge_w[edge[i].id]));
        }
    }
}
void update_edge(int u,int v,int d,int w){
    LL t=dp[v];
    if(bcc_sp[v]>0&&bcc_sp[v]<k)
    t=max(0LL,dp[v]-w);
    dp[u]+=d*t;
    bcc_sp[u]+=d*bcc_sp[v];
}
void dp_1(int u,int fa){
    dp[u]=bcc_v[u];
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    _for(i,0,g[u].size()){
        int v=g[u][i].first,w=g[u][i].second;
        if(v==fa)continue;
        dp_1(v,u);
        update_edge(u,v,1,w);
    }
}
void dp_2(int u,int fa){
    ans[u]=dp[u];
    _for(i,0,g[u].size()){
        int v=g[u][i].first,w=g[u][i].second;
        if(v==fa)continue;
        update_edge(u,v,-1,w);
        update_edge(v,u,1,w);
        dp_2(v,u);
        update_edge(v,u,-1,w);
        update_edge(u,v,1,w);
    }
}
int main()
{
    int n,m,u,v;
    n=read_int(),m=read_int(),k=read_int();
    _rep(i,1,k)
    node_sp[read_int()]=1;
    _rep(i,1,n)
    c[i]=read_int();
    _rep(i,1,m)
    edge_w[i]=read_int();
    _rep(i,1,m){
        u=read_int(),v=read_int();
        Insert(u,v,i);Insert(v,u,i);
    }
    get_bcc(n);
    dp_1(1,1);
    dp_2(1,1);
    _rep(i,1,n)
    space(ans[bcc_id[i]]);
    return 0;
}

有向图的强连通分量

算法思想

考虑 $\text{dfs}$ 求强连通分量，$\text{dfs}$ 遍历过程将每个点入栈。

只要保证在 $\text{dfs}$ 遍历完某个强连通分量后立即将所有该连通分量的点出栈并标记，即可区分每个
强连通分量。
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这等价于查询第一个进入栈且属于该强连通分量的点的编号。

一个点是第一个进入栈且属于该强连通分量的点等价于接下来入栈的点均无法访问该点的祖先节点，考虑
用类似求点-双连通分量的方法维护。

int dfs_id[MAXN],low[MAXN],dfs_t,scc_id[MAXN],scc_cnt;
vector<int> scc[MAXN];
stack<int>Stack;
void dfs(int u){
    low[u]=dfs_id[u]=++dfs_t;
    Stack.push(u);
    for(int i=head[u];i;i=edge[i].next){
        int v=edge[i].to;
        if(!dfs_id[v]){
            dfs(v);
            low[u]=min(low[u],low[v]);//树边更新
        }
        else if(!scc_id[v])//反向边更新
        low[u]=min(low[u],dfs_id[v]);
    }
    if(low[u]==dfs_id[u]){
        int temp;
        scc[++scc_cnt].clear();
        while(true){
            temp=Stack.top();Stack.pop();
            scc_id[temp]=scc_cnt;
            scc[scc_cnt].push_back(temp);
            if(temp==u)
            break;
        }
    }
}
void find_scc(int n){
    mem(dfs_id,0);
    mem(scc_id,0);
    dfs_t=scc_cnt=0;
    _rep(i,1,n){
        if(!dfs_id[i])
        dfs(i);
    }
}

性质

缩点后得到的图一定是 $\text{DAG}$，且强连通分量编号符合逆拓扑序
设缩点后的图有 $a$ 个点入度为 $0$，$b$ 个点出度为 $0$，则需至少添加 $\max(a,b)$ 条边才能保
证图联通(除非图已经连通)
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$\text{2-SAT}$ 问题

问题描述

给定若干条形如 $(\neg)x_i\text{ opt }(\neg)x_j$ 的式子，求出一组解。

其中 $x_i$ 为布尔型变量， $\text{opt}$ 为二元逻辑运算符。

算法思想

考虑将 $x_i$ 拆为 $y_{2i}$ 与 $y_{2i+1}$ 两个点，其中 $y_{2i}$ 表示 $x_i$ 为假， $y_{2i+1}$ 表示
$x_i$ 为真。

不妨设 $x$ 的正面为 $y$ ，反面为 $y'$。考虑按如下方式建边，表示推出关系。

$$ \begin{equation} x_i\lor x_j \iff {y'}_i\to y_j,y_i\to {y'}_j\\ x_i\oplus x_j \iff {y'}_i\to y_j,y_j\to
{y'}_i,y_i\to {y'}_j,{y'}_j \to y_i\\ x_i \iff {y'}_i\to y_i \end{equation} $$

建边后跑 $\text{Tarjan}$ 算法，易知同一连通分量取值相同，所以 $y$、$y'$ 处于同一连通分量则无解，
反之有解。

构造解的方法为取 $y$、$y'$ 中连通分量拓扑序小的点为真，可以考虑利用 $\text{Tarjan}$ 算法得到的
逆拓扑序，时间复杂度 $O(n+m)$。

bool query(int n){
    _rep(i,1,n){
        if(scc_id[i<<1]==scc_id[i<<1|1])
        return false;
        else
        Bool[i]=scc_id[i<<1]>scc_id[i<<1|1];
    }
    return true;
}

例题

UVA1391

题意

现有三种任务分配给 $n$ 个宇航员，设他们的平均年龄为 $x$。现有 $3$ 个任务，每个宇航员恰好分配一
个任务。

只有年龄不小于 $x$ 的宇航员能接受任务 $A$，只有年龄小于 $x$ 的宇航员能接受任务 $B$，所有宇航员
可以接受任务 $C$。

有 $m$ 对宇航员相互讨厌，不能分配到同一个任务。

https://www.luogu.com.cn/problem/UVA1391
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题解

对年龄不小于平均年龄的宇航员，设 $x_i=true$ 表示他分配任务 $A$，否则分配任务 $C$。

对年龄小于平均年龄的宇航员，设 $x_i=true$ 表示他分配任务 $B$，否则分配任务 $C$。

对每对互相讨厌的宇航员，若他们年龄约束相同，则 $x$ 值必须不同，执行 $x_i\oplus x_j$。

若他们年龄约束不同，只有不能同时接受任务 $C$ 的限制，执行 $x_i\lor x_j$。

const int MAXN=2e5+5,MAXM=1e5+5;
struct Edge{
    int to,next;
}edge[MAXM<<2];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
    edge[++edge_cnt].next=head[u];
    edge[edge_cnt].to=v;
    head[u]=edge_cnt;
}
int dfs_id[MAXN],low[MAXN],dfs_t,scc_id[MAXN],scc_cnt;
vector<int> scc[MAXN];
stack<int>Stack;
void dfs(int u){
    low[u]=dfs_id[u]=++dfs_t;
    Stack.push(u);
    for(int i=head[u];i;i=edge[i].next){
        int v=edge[i].to;
        if(!dfs_id[v]){
            dfs(v);
            low[u]=min(low[u],low[v]);
        }
        else if(!scc_id[v])
        low[u]=min(low[u],dfs_id[v]);
    }
    if(low[u]==dfs_id[u]){
        int temp;
        scc[++scc_cnt].clear();
        while(true){
            temp=Stack.top();Stack.pop();
            scc_id[temp]=scc_cnt;
            scc[scc_cnt].push_back(temp);
            if(temp==u)
            break;
        }
    }
}
void find_scc(int n){
    mem(dfs_id,0);
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    mem(scc_id,0);
    dfs_t=scc_cnt=0;
    _rep(i,1,n){
        if(!dfs_id[i])
        dfs(i);
    }
}
bool Bool[MAXN],type[MAXN];
bool query(int n){
    _rep(i,1,n){
        if(scc_id[i<<1]==scc_id[i<<1|1])
        return false;
        else
        Bool[i]=scc_id[i<<1]>scc_id[i<<1|1];
    }
    return true;
}
int Age[MAXN];
int main()
{
    int n,m,u,v;
    while(~scanf("%d%d",&n,&m)){
        if(n==0&&m==0)
        break;
        mem(head,0);edge_cnt=0;
        int s=0;
        _rep(i,1,n)
        Age[i]=read_int(),s+=Age[i];
        _rep(i,1,n)
        type[i]=(Age[i]*n>=s);
        while(m--){
            u=read_int();
            v=read_int();
            if(type[u]==type[v]){
                Insert(u<<1,v<<1|1);
                Insert(v<<1|1,u<<1);
                Insert(v<<1,u<<1|1);
                Insert(u<<1|1,v<<1);
            }
            else{
                Insert(u<<1,v<<1|1);
                Insert(v<<1,u<<1|1);
            }
        }
        find_scc(n<<1);
        if(query(n)){
            _rep(i,1,n){
                if(Bool[i]){
                    if(type[i])
                    puts("A");
                    else
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                    puts("B");
                }
                else
                puts("C");
            }
        }
        else
        puts("No solution");
    }
    return 0;
}
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