
2026/01/14 04:07 1/4 多项式 1

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式 1

拉格朗日插值法

算法简介

给定 n 个坐标 (x_i,y_i)，求解唯一确定的最高次不超过 $n-1$ 次的多项式 $f(x)$，满足 $f(x_i)=y_i$。

算法模板

洛谷p4781

构造 $g_i(x)=y_i\prod_{j\neq i}\frac {x-x_j}{x_i-x_j}$，易知

$$g_i(x_j)= \begin{cases} y_i, & j=i \\ 0, & j\neq i \end{cases}$$

于是有

$$f(x)=\sum_{i=1}^n g_i(x)=\sum_{i=1}^n y_i\prod_{j\neq i}\frac {x-x_j}{x_i-x_j}\tag{1}$$

根据上式可以 $O(n^2)$ 计算出 $f(k)$。

int x[MAXN],y[MAXN];
int Lagrange(int n,int k){
 int ans=0,a,b;
 _rep(i,1,n){
 a=y[i],b=1;
 _rep(j,1,n){
 if(j==i)continue;
 a=1LL*a*(k-x[j])%Mod;
 b=1LL*b*(x[i]-x[j])%Mod;
 }
 ans=(ans+1LL*a*inv(b)%Mod)%Mod;
 }
 return (ans%Mod+Mod)%Mod;
}

算法拓展

线性优化

事实上，如果 x_i 取值连续，上述算法复杂度可以优化为 $O(n)$。

以 $x_i=i$ 为例，则 (1) 式化为

$$f(x)=\sum_{i=1}^n y_i\prod_{j\neq i}\frac {x-j}{i-j}=\sum_{i=1}^n (-1)^{n-i}y_i\frac

https://www.luogu.com.cn/problem/P4781
https://www.luogu.com.cn/problem/P4781

Last
update:
2020/08/03
22:45

2020-2021:teams:legal_string:jxm2001:
多项式_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_1&rev=1596465911

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:07

{\prod_{j=1}^{i-1}(x-j)\prod_{j=i+1}^{n}(x-j)}{(i-1)!(n-i)!}$$

分子部分考虑 $O(n)$ 预处理序列 $\{x-i\}$ 的前缀积和后缀积，分母部分考虑 $O(n)$ 预处理阶乘的逆。

int inv_frac[MAXN],y[MAXN],pre[MAXN],suf[MAXN];
int Lagrange(int x,int n){
 pre[0]=suf[n+1]=1;
 _rep(i,1,n)pre[i]=1LL*pre[i-1]*(x-i)%Mod;
 for(int i=n;i;i--)suf[i]=1LL*suf[i+1]*(x-i)%Mod;
 int ans=0,sign;
 _rep(i,1,n){
 sign=((n-i)&1)?-1:1;
ans=(ans+1LL*sign*y[i]*pre[i-1]%Mod*suf[i+1]%Mod*inv_frac[i-1]%Mod*inv_frac[
n-i])%Mod;
 }
 return ans;
}

重心拉格朗日插值法

考虑 $O(n)$ 时间动态插入每个点 (x_i,y_i)。

令 $g(x)=\prod_{i=1}^n (x-x_i),w_i=\prod_{j\neq i}(x_i-x_j)$，于是 (1) 式化为

$$f(x)=\sum_{i=1}^n y_i\prod_{j\neq i}\frac {x-x_j}{x_i-x_j}=g(x)\sum_{i=1}^n\frac {y_i}{(x-
x_i)w_i}\tag{2}$$

于是每次插入后动态更新每个 w_i 即可。

int x[MAXN],y[MAXN],w[MAXN],z;
void Insert(int tx,int ty){
 w[++z]=1;
 x[z]=tx,y[z]=ty;
 _for(i,1,z){
 w[i]=1LL*w[i]*(x[i]-x[z])%Mod;
 w[z]=1LL*w[z]*(x[z]-x[i])%Mod;
 }
}
int Lagrange(int k){
 int g=1,s=0;
 _rep(i,1,z){
 g=1LL*g*(k-x[i])%Mod;
 s=(s+1LL*y[i]*inv(1LL*(k-x[i])*w[i]%Mod))%Mod;
 }
 return (1LL*g*s%Mod+Mod)%Mod;
}

2026/01/14 04:07 3/4 多项式 1

CVBB ACM Team - https://wiki.cvbbacm.com/

算法练习

习题一

洛谷p5437

题意

给定一个完全图，完全图中节点编号为 $1\sim n$。i,j 节点间连一条边权为 $(i+j)^k$ 的边。

随机选取 $n-1$ 条边得到一棵生成树，问生成树的边权和的期望值。

题解

发现每条边地位都是等价的，于是每条边出现在生成树的概率为 $\frac{2(n-1)}{n(n-1)}=\frac 2n$。

于是不难得到答案为 $\frac 2n\sum_{i=1}^{n-1}\sum_{j=i+1}^n (i+j)^k$，记
$f(n)=\sum_{i=1}^{n-1}\sum_{j=i+1}^n (i+j)^k$，考虑如何快速求出 $f(n)$。

$$f(n)-f(n-1)=\sum_{i=1}^{n-1}\sum_{j=i+1}^n (i+j)^k-\sum_{i=1}^{n-2}\sum_{j=i+1}^{n-1}
(i+j)^k=(2n-1)^k+\sum_{i=1}^{n-2}(i+n)=\sum_{i=n+1}^{2n-1}i^k$$

于是有

$$f(n)= \begin{cases} 0, & n=1 \\ \sum_{i=2}^n\sum_{j=i+1}^{2i-1}j^k, & n\gt 1 \end{cases} $$

易知 $\sum_{j=i+1}^{2i-1}j^k$ 是 $k+1$ 次多项式，于是
$\sum_{i=2}^n\sum_{j=i+1}^{2i-1}j^k$ 是 $k+2$ 次多项式。

线性筛预处理 $1^k,2^k\cdots (2k+5)^k$，于是可以线性时间求出 $f(1),f(2)\cdots f(k+3)$，最后考虑拉
格朗日插值即可。

总时间复杂度 $O(k)$。

const int MAXN=1e7+5,MAXV=2e7+10,Mod=998244353;
int quick_pow(int x,int k){
 int ans=1;
 while(k){
 if(k&1)ans=1LL*ans*x%Mod;
 x=1LL*x*x%Mod;
 k>>=1;
 }
 return ans;
}
int prime[MAXV],kpow[MAXV],cnt;
void Prime(int k){
 kpow[1]=1;
 _for(i,2,MAXV){

https://www.luogu.com.cn/problem/P5437
https://www.luogu.com.cn/problem/P5437

Last
update:
2020/08/03
22:45

2020-2021:teams:legal_string:jxm2001:
多项式_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_1&rev=1596465911

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:07

 if(!kpow[i]) prime[cnt++]=i,kpow[i]=quick_pow(i,k);
 for(int j=0;j<cnt&&i*prime[j]<MAXV;j++){
 kpow[i*prime[j]]=1LL*kpow[i]*kpow[prime[j]]%Mod;
 if(i%prime[j]==0) break;
 }
 }
}
int inv[MAXN];
void get_inv(){
 inv[1]=1;
 _for(i,2,MAXN)
 inv[i]=1LL*(Mod-Mod/i)*inv[Mod%i]%Mod;
}
int inv_frac[MAXN],y[MAXN],pre[MAXN],suf[MAXN],m;
int Lagrange(int x,int n){
 pre[0]=suf[n+1]=1;
 _rep(i,1,n)pre[i]=1LL*pre[i-1]*(x-i)%Mod;
 for(int i=n;i;i--)suf[i]=1LL*suf[i+1]*(x-i)%Mod;
 int ans=0,sign;
 _rep(i,1,n){
 sign=((n-i)&1)?-1:1;
ans=(ans+1LL*sign*y[i]*pre[i-1]%Mod*suf[i+1]%Mod*inv_frac[i-1]%Mod*inv_frac
[n-i])%Mod;
 }
 return ans;
}
int main()
{
 int n=read_int(),k=read_int();
 Prime(k);get_inv();
 inv_frac[0]=1,y[0]=0;
 _for(i,1,MAXN)inv_frac[i]=1LL*inv_frac[i-1]*inv[i]%Mod;
 _for(i,1,MAXV)kpow[i]=(kpow[i]+kpow[i-1])%Mod;
 _for(i,1,MAXN)y[i]=(y[i-1]+kpow[2*i-1]-kpow[i])%Mod;
 int ans=2LL*Lagrange(n,k+3)*quick_pow(n,Mod-2)%Mod;
 enter((ans+Mod)%Mod);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_1&rev=1596465911

Last update: 2020/08/03 22:45

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_1&rev=1596465911

	多项式 1
	拉格朗日插值法
	算法简介
	算法模板
	算法拓展
	线性优化
	重心拉格朗日插值法

	算法练习
	习题一
	题意
	题解

