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多项式 2

FFT

算法简介

$O(n\log n)$ 时间实现多项式点值表示法与系数表示法之间的转化，主要用于加速多项式乘法。

算法实现

假设 $f(x)$ 为 $n-1$ 次多项式，且 $n$ 是 $2$ 的幂次。(如果不满足条件可以将高次系数视为 $0$)

快速傅里叶变换

考虑如何实现 $O(n\log n)$ 时间根据多项式系数表示法得到多项式点值表示法。

设 $f(x)=a_0+a_1x+a_2x^2+\cdots a_{n-1}x^{n-1}$。

构造辅助函数 $g(x)=a_0+a_2x+\cdots a_{n-2}x^{\frac n2-1},h(x)=a_1+a_3x+\cdots
a_{n-1}x^{\frac n2-1}$。

于是有 $f(x)=g\left(x^2\right)+xh\left(x^2\right)$。

记 $\omega_n=\cos \frac {2\pi}n+\sin \frac {2\pi}ni$，将 $x=\omega_n^k,x=\omega_n^{k+\frac
n2}(k=0,1\cdots \frac n2-1)$ 代入，有

$$f(\omega_n^k)=g(\omega_n^{2k})+\omega_n^kh(\omega_n^{2k})=g(\omega_{\frac
n2}^k)+\omega_n^kh(\omega_{\frac n2}^k)$$

$$f(\omega_n^{k+\frac n2})=g(\omega_n^{2k+n})+\omega_n^{k+\frac
n2}h(\omega_n^{2k+n})=g(\omega_{\frac n2}^k)-\omega_n^kh(\omega_{\frac n2}^k)$$

于是根据 $g(x)$ 的点值表示法 $\{\left(\omega_{\frac n2}^k,g(\omega_{\frac
n2}^k)\right)|k=0,1\cdots \frac n2-1\}$ 和 $h(x)$ 的点值表示法 $\{\left(\omega_{\frac
n2}^k,h(\omega_{\frac n2}^k)\right)|k=0,1\cdots \frac n2-1\}$

可以 $O(n)$ 时间计算出 $f(x)$ 的点值表示法 $\{\left(\omega_n^k,f(\omega_n^k)\right)|k=0,1\cdots
n-1\}$。考虑分治算法，即可 $O(n\log n)$ 解决上述问题。

递归边界为当分治到多项式只剩下一个常数项时，多项式点值表示法即为系数表示法，于是直接返回。

快速傅里叶逆变换

考虑如何实现 $O(n\log n)$ 时间根据多项式系数点值法得到多项式系数表示法。

记 $y_i=f(\omega_n^i)$。假设 $f(x)$ 系数表示法为 ${a_0,a_1\cdots a_{n-1}}$，点值表示法为
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$\{(\omega_n^0,y_0),(\omega_n^1,y_1)\cdots (\omega_n^{n-1},y_{n-1})\}$。

构造多项式 $A(x)=\sum_{i=0}^{n-1}y_ix^i$，将 $x=\omega_n^{-k}(k=0,1\cdots n-1)$ 代入，有

$$A\left(\omega_n^{-k}\right)=\sum_{i=0}^{n-1}\omega_n^{-ki}\sum_{j=0}^{n-1}
a_j\omega_n^{ij}=\sum_{i=0}^{n-1}\sum_{j=0}^{n-1} a_j\omega_n^{i(j-
k)}=\sum_{j=0}^{n-1}a_j\sum_{i=0}^{n-1}\omega_n^{i(j-k)}$$

如果 $j=k$，则 $\sum_{i=0}^{n-1}\omega_n^{i(j-k)}=\sum_{i=0}^{n-1}1=n$。

如果 $j\neq k$，则 $\sum_{i=0}^{n-1}\omega_n^{i(j-k)}=\frac{\omega_n^{n(j-
k)}-1}{\omega_n^{(j-k)}-1}=\frac{1-1}{\omega_n^{(j-k)}-1}=0$。

于是有 $A\left(\omega_n^{-k}\right)=na_k$，考虑快速傅里叶变换计算 $A(x)$ 的点值表示法即可快速解
决上述问题。

递归版 FFT 板子

complex temp[MAXN<<2];
void FFT(complex *f,int n,int type){//type=1为正变换，type=-1为逆变换，逆变换最终
结果需要除以n
    if(n==1)return;
    int m=n>>1;
    memcpy(temp,f,sizeof(complex)*n);
    for(int i=0;i<n;i+=2)
    f[i>>1]=temp[i],f[(i>>1)+m]=temp[i+1];
    complex *f1=f,*f2=f+m;
    FFT(f1,m,type);FFT(f2,m,type);
    complex cur(1.0,0.0),w(cos(2.0*pi/n),type*sin(2.0*pi/n));
    for(int i=0;i<m;i++){
        temp[i]=f1[i]+cur*f2[i];
        temp[i+m]=f1[i]-cur*f2[i];
        cur=cur*w;
    }
    memcpy(f,temp,sizeof(complex)*n);
}

算法优化

蝴蝶变换

考虑倍增模拟分治过程，于是需要调整运算顺序。观察下面分治过程

$$\{x_0,x_1,x_2,x_3,x_4,x_5,x_6,x_7\}$$

$$\{x_0,x_2,x_4,x_6\},\{x_1,x_3,x_5,x_7\}$$

$$\{x_0,x_4\},\{x_2,x_6\},\{x_1,x_5\},\{x_3,x_7\}$$
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$$\{x_0\},\{x_4\},\{x_2\},\{x_6\},\{x_1\},\{x_5\},\{x_3\},\{x_7\}$$

发现将 $x_i$ 的下标用二进制表示，然后将其翻转就可以得到 $x_i$ 的最终位置。例如 $3=011,6=110$，于
是 $x_3$ 与 $x_6$ 位置互换。

非递归版 FFT 板子

int rev[MAXN<<2];
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void FFT(complex *f,int n,int type){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    complex t1,t2;
    for(int i=1;i<n;i<<=1){
        complex w(cos(pi/i),type*sin(pi/i));
        for(int j=0;j<n;j+=(i<<1)){
            complex cur(1.0,0.0);
            _for(k,j,j+i){
                t1=f[k],t2=cur*f[k+i];
                f[k]=t1+t2,f[k+i]=t1-t2;
                cur=cur*w;
            }
        }
    }
    if(type==-1)_for(i,0,n)
    f[i].x/=n;
}

算法练习

洛谷p3803

题意

给定两个多项式的系数表示法，求两个多项式乘积的系数表示法。

题解

记这两个多项式为 $g(x)=b_0+b_1x+\cdots b_nx^n,h(x)=c_0+c_1x+\cdots c_mx^m$，所求多项式为
$f(x)=a_0+a_1x+\cdots a_{n+m}x^{n+m}$。

https://www.luogu.com.cn/problem/P3803
https://www.luogu.com.cn/problem/P3803
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设 $s$ 是 $2$ 的幂次且 $\frac s2\le n+m\lt s$。

对 $g(x)=b_0+b_1x+\cdots b_nx^n+0x^{n+1}\cdots +0x^{s-1}$ 套用快速傅里叶变换求出点值表示
法 $\{(w_s^0,g_0)\cdots (w_s^{s-1},g_{s-1})\}$。

同样对 $h(x)$ 进行上述操作，于是得到 $f(x)$ 的点值表示法 $\{(w_s^0,g_0h_0)\cdots
(w_s^{s-1},g_{s-1}h_{s-1})\}$。

再根据快速傅里叶逆变换，即可得到 $f(x)$ 的系数表示法，时间复杂度 $O(s\log s)$。

const int MAXN=1e6+5;
const double pi=acos(-1.0);
struct complex{
    double x,y;
    complex(double x=0.0,double y=0.0):x(x),y(y){}
    complex operator + (const complex &b){
        return complex(x+b.x,y+b.y);
    }
    complex operator - (const complex &b){
        return complex(x-b.x,y-b.y);
    }
    complex operator * (const complex &b){
        return complex(x*b.x-y*b.y,x*b.y+y*b.x);
    }
}a[MAXN<<2],b[MAXN<<2];
int rev[MAXN<<2];
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void FFT(complex *f,int n,int type){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    complex t1,t2;
    for(int i=1;i<n;i<<=1){
        complex w(cos(pi/i),type*sin(pi/i));
        for(int j=0;j<n;j+=(i<<1)){
            complex cur(1.0,0.0);
            _for(k,j,j+i){
                t1=f[k],t2=cur*f[k+i];
                f[k]=t1+t2,f[k+i]=t1-t2;
                cur=cur*w;
            }
        }
    }
    if(type==-1)_for(i,0,n)
    f[i].x/=n;
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}
int main()
{
    int n1=read_int(),n2=read_int(),n=build(n1+n2);
    _rep(i,0,n1)
    a[i].x=read_int();
    _rep(i,0,n2)
    b[i].x=read_int();
    FFT(a,n,1);FFT(b,n,1);
    _for(i,0,n)
    a[i]=a[i]*b[i];
    FFT(a,n,-1);
    _rep(i,0,n1+n2)
    space((int)(a[i].x+0.5));
    return 0;
}

优化

考虑式子 $\left(g(x)+h(x)i\right)^2=g^2(x)-h^2(x)+2g(x)h(x)i=g^2(x)-h^2(x)+2f(x)i$。

于是将 $g(x)$ 作为实部，$h(x)$ 作为虚部，两次 $\text{FFT}$ 计算出 $\left(g(x)+h(x)i\right)^2$ 表达式
系数，即可得到 $f(x)$ 系数。

const int MAXN=1e6+5;
const double pi=acos(-1.0);
struct complex{
    double x,y;
    complex(double x=0.0,double y=0.0):x(x),y(y){}
    complex operator + (const complex &b){
        return complex(x+b.x,y+b.y);
    }
    complex operator - (const complex &b){
        return complex(x-b.x,y-b.y);
    }
    complex operator * (const complex &b){
        return complex(x*b.x-y*b.y,x*b.y+y*b.x);
    }
}a[MAXN<<2];
int rev[MAXN<<2];
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void FFT(complex *f,int n,int type){
    _for(i,0,n)if(i<rev[i])
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    swap(f[i],f[rev[i]]);
    complex t1,t2;
    for(int i=1;i<n;i<<=1){
        complex w(cos(pi/i),type*sin(pi/i));
        for(int j=0;j<n;j+=(i<<1)){
            complex cur(1.0,0.0);
            _for(k,j,j+i){
                t1=f[k],t2=cur*f[k+i];
                f[k]=t1+t2,f[k+i]=t1-t2;
                cur=cur*w;
            }
        }
    }
    if(type==-1)_for(i,0,n)
    f[i].y/=n;
}
int main()
{
    int n1=read_int(),n2=read_int(),n=build(n1+n2);
    _rep(i,0,n1)
    a[i].x=read_int();
    _rep(i,0,n2)
    a[i].y=read_int();
    FFT(a,n,1);
    _for(i,0,n)
    a[i]=a[i]*a[i];
    FFT(a,n,-1);
    _rep(i,0,n1+n2)
    space((int)(a[i].y/2+0.5));
    return 0;
}

应用

洛谷p1919

进行高精度乘法时，将 $10$ 进制数视为 $x=10$ 多项式，进行多项式乘法后考虑进位情况即可。

const int MAXN=1e6+5;
const double pi=acos(-1.0);
struct complex{
    double x,y;
    complex(double x=0.0,double y=0.0):x(x),y(y){}
    complex operator + (const complex &b){
        return complex(x+b.x,y+b.y);
    }
    complex operator - (const complex &b){
        return complex(x-b.x,y-b.y);

https://www.luogu.com.cn/problem/P1919
https://www.luogu.com.cn/problem/P1919
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    }
    complex operator * (const complex &b){
        return complex(x*b.x-y*b.y,x*b.y+y*b.x);
    }
}a[MAXN<<2],b[MAXN<<2];
int rev[MAXN<<2];
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void FFT(complex *f,int n,int type){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    complex t1,t2;
    for(int i=1;i<n;i<<=1){
        complex w(cos(pi/i),type*sin(pi/i));
        for(int j=0;j<n;j+=(i<<1)){
            complex cur(1.0,0.0);
            _for(k,j,j+i){
                t1=f[k],t2=cur*f[k+i];
                f[k]=t1+t2,f[k+i]=t1-t2;
                cur=cur*w;
            }
        }
    }
    if(type==-1)_for(i,0,n)
    f[i].x/=n;
}
char s1[MAXN<<2],s2[MAXN<<2];
int ans[MAXN<<2];
int main()
{
    scanf("%s%s",s1,s2);
    int n1=strlen(s1)-1,n2=strlen(s2)-1,n=build(n1+n2);
    _rep(i,0,n1)
    a[i].x=s1[n1-i]-'0';
    _rep(i,0,n2)
    b[i].x=s2[n2-i]-'0';
    FFT(a,n,1);FFT(b,n,1);
    _for(i,0,n)
    a[i]=a[i]*b[i];
    FFT(a,n,-1);
    _for(i,0,n){
        ans[i]+=(int)(a[i].x+0.5);
        ans[i+1]+=ans[i]/10;
        ans[i]%=10;
    }
    while(n>=0&&!ans[n])n--;
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    if(n==-1)putchar('0');
    else
    while(n>=0)putchar(ans[n--]+'0');
    return 0;
}

NTT

算法简介

$O(n\log n)$ 时间实现多项式特定模数意义下的点值表示法与系数表示法之间的转化，无精度误差。

理论基础

阶

定义

设 $n\gt 1,gcd(a,n)=1$，称 $a^x\equiv 1\pmod n$ 的最小正整数解为 $a$ 对 $n$ 的阶，记为
$\delta_n(a)$。

性质

设 $a^x\equiv 1\pmod n$，则 $\delta_n(a)\mid x$。特别的，$\delta_n(a)\mid \varphi(n)$。

原根

定义

如果 $(n,a)$ 满足 $a\gt 1,\delta_n(a)=\varphi(n)$，则称 $a$ 为 $n$ 的原根。

性质

一个正整数 $n$ 具有原根的充要条件为 $n=2,4,p^\alpha,2p^\alpha$，其中 $p$ 为素数1.
如果 $n$ 具有原根，则 $n$ 具有 $\varphi\left(\varphi(n)\right)$ 个原根2.
如果 $g$ 为 $n$ 的原根，则 $1,g^1,g^2\cdots g^{\varphi(n)}$ 构成 $n$ 的最简剩余系3.
设 $\varphi(n)=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$，且 $n\nmid a^{\frac4.
{\varphi(n)}{p_i}}-1(i=1,2\cdots k)$，则 $a$ 为 $n$ 的原根
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算法实现

当模数是素数 $p$ 时，记 $\omega_n\equiv g^{\frac {p-1}n}\pmod p$，发现 $\omega_n$ 满足以下性
质

$\omega_n^{2k}=\omega_{\frac n2}^k$1.
$\omega_n^{k+\frac n2}\equiv -\omega_n^k\pmod p$2.
$p-1 \nmid k,\sum_{i=0}^{n-1}\omega_n^{ki} \equiv 0\pmod p$3.

于是考虑用 $g^{\frac {p-1}n}$ 替代 $\text{FFT}$ 中的 $\omega_n$，其余过程与 $\text{FFT}$ 类同。

注意算法过程中需要保证 $\frac {p-1}n$ 为整数，故需要选择含 $2$ 的幂次较多的模数 $p$。

一般常见模数为 $998244353,1004535809,469762049$，这三个数的原根均包含 $3$。

const int MAXN=1e6+5,Mod=998244353,G=3,Inv_G=332748118;
int rev[MAXN<<2];
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void NTT(int *f,int n,int type){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    int t1,t2;
    for(int i=1;i<n;i<<=1){
        int w=quick_pow(type==1?G:Inv_G,(Mod-1)/(i<<1));
        for(int j=0;j<n;j+=(i<<1)){
            int cur=1;
            _for(k,j,j+i){
                t1=f[k],t2=1LL*cur*f[k+i]%Mod;
                f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
                cur=1LL*cur*w%Mod;
            }
        }
    }
    if(type==-1){
        int div=quick_pow(n,Mod-2);
        _for(i,0,n)
        f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
    }
}

MTT

洛谷p4245

https://www.luogu.com.cn/problem/P4245
https://www.luogu.com.cn/problem/P4245
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算法简介

$O(n\log n)$ 时间实现多项式任意模数意义下乘法。

算法实现

三模数NTT

设所求多项式系数表示法为 $\{a_0,a_1\cdots a_{n-1}\}$，考虑取用三个不同的大模数
$469762049,998244353,1004535809$。

跑三轮 $\text{NTT}$，可以得到三组同余方程，利用中国剩余定理将同余方程合并，可以得到 $a_i\equiv
b_i\pmod {471064322751194440790966273}$

如果 $0\le a_i\le 10^{26}\lt 471064322751194440790966273$，显然有 $a_i=b_i$。

设两条多项式的最高次幂为 $n$，系数最大值为 $v$，则两多项式相乘得到的多项式的最大系数不超过
$(n+1)v^2$。

故绝大多数题目的数据范围都满足上述约束条件。

关于同余方程的合并，为防止整型溢出，考虑先合并其中两条，设结果为 $a_i \equiv A\pmod M$，令
$a_i=A+MK$，代入第三条同余方程。

于是有 $A+MK\equiv t\pmod m$。移项，得 $K\equiv (t-A)M^{-1}\pmod m$。

由此解得 $A$ 与 $K$ 后即可在乘法不溢出得情况下计算 $a_i$ 在给定模数意义下的结果。

int quick_pow(int a,int b,int mod){
    int ans=1;
    while(b){
        if(b&1)
        ans=1LL*ans*a%mod;
        a=1LL*a*a%mod;
        b>>=1;
    }
    return ans;
}
LL mul(LL a,int b,LL mod){
    LL ans=0;
    while(b){
        if(b&1)
        ans=(ans+a)%mod;
        b>>=1;
        a=(a<<1)%mod;
    }
    return ans;
}
const int m[3]={469762049,998244353,1004535809},G=3;
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int rev[MAXN<<2];
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void NTT(int *f,int n,int type,int mod){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    int t1,t2,Inv_G=quick_pow(G,mod-2,mod);
    for(int i=1;i<n;i<<=1){
        int w=quick_pow(type==1?G:Inv_G,(mod-1)/(i<<1),mod);
        for(int j=0;j<n;j+=(i<<1)){
            int cur=1;
            _for(k,j,j+i){
                t1=f[k],t2=1LL*cur*f[k+i]%mod;
                f[k]=(t1+t2)%mod,f[k+i]=(t1-t2)%mod;
                cur=1LL*cur*w%mod;
            }
        }
    }
    if(type==-1){
        int div=quick_pow(n,mod-2,mod);
        _for(i,0,n)
        f[i]=(1LL*f[i]*div%mod+mod)%mod;
    }
}
int f2[MAXN<<2],g2[MAXN<<2],temp[3][MAXN<<2];
void MTT(int *f,int n1,int *g,int n2,int *ans,int mod){
    int n=build(n1+n2);
    _for(i,0,3){
        memcpy(f2,f,sizeof(f2));memcpy(g2,g,sizeof(g2));
        NTT(f2,n,1,m[i]);NTT(g2,n,1,m[i]);
        _for(j,0,n)temp[i][j]=1LL*f2[j]*g2[j]%m[i];
        NTT(temp[i],n,-1,m[i]);
    }
    LL A,K,M=1LL*m[0]*m[1];
    int
inv1=quick_pow(m[1],m[0]-2,m[0]),inv2=quick_pow(m[0],m[1]-2,m[1]),inv3=quick
_pow(M%m[2],m[2]-2,m[2]);
    _rep(i,0,n1+n2){
A=(mul(1LL*temp[0][i]*m[1]%M,inv1,M)+mul(1LL*temp[1][i]*m[0]%M,inv2,M))%M;
        K=((temp[2][i]-A)%m[2]+m[2])%m[2]*inv3%m[2];
        ans[i]=(((K%mod)*(M%mod)+A%mod)%mod+mod)%mod;
    }
}



Last
update:
2020/08/05
17:21

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596619306

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:20

优化版拆系数FFT

考虑提高 $\text{FFT}$ 精度。取 $m=\sqrt v$($v=$ 给定多项式系数的最大值)，进行下述转化

$$f(x)=f_1(x)m+f_2(x),g(x)=g_1(x)m+g_2(x),f(x)g(x)=f_1(x)g_1(x)m^2+(f_2(x)g_1(x)+f_1(x)g_2(x))m
+f_2(x)g_2(x)$$

发现只要求出 $f_1(x)g_1(x),f_2(x)g_1(x),f_1(x)g_2(x),f_2(x)g_2(x)$ 这四条多项式的系数即可求出
$f(x)g(x)$ 的系数。

同时 $f_1(x),f_2(x),g_1(x),g_2(x)$ 系数范围为 $[0,\sqrt v]$，使得计算过程中浮点误差减小。

接下来考虑如何快速计算 $f_1(x)g_1(x),f_2(x)g_1(x),f_1(x)g_2(x),f_2(x)g_2(x)$ 这四条多项式的系数。

首先，构造多项式 $P(x)=A(x)+B(x)i,Q(x)=A(x)-B(x)i$，不难验证有 $P(x)=\overline{Q(\overline x)}$。

于是根据 $P(x)$ 点值表示法可以 $O(n)$ 求出 $Q(x)$ 点值表示法，同时又可以 $O(n)$ 求解 $A(x)=\frac
{P(x)+Q(x)}2,B(x)=\frac {P(x)-Q(x)}{2i}$。

令 $A=f_1(x),B=f_2(x)$ 于是可以一次 $\text{FFT}$ 求出 $f_1(x),f_2(x)$ 的点值表示法。

同理可以一次 $\text{FFT}$ 求出 $g_1(x),g_2(x)$ 的点值表示法。

再次构造多项式 $P(x)=f_1(x)g_1(x)+f_2(x)g_1(x)i,Q(x)=f_1(x)g_2(x)+f_2(x)g_2(x)i$。

根据 $f_1(x),f_2(x),g_1(x),g_2(x)$ 的点值表示法可以 $O(n)$ 求出 $P(x),Q(x)$ 的点值表示法。

再次对 $P(x),Q(x)$ 使用 $\text{FFT}$ 即可求出 $P(x),Q(x)$ 的系数表示法，恰好对应所求的
$f_1(x)g_1(x),f_2(x)g_1(x),f_1(x)g_2(x),f_2(x)g_2(x)$。

此方法合计只使用了四次 $\text{FFT}$，算法效率优于三模数 $\text{NTT}$。

为保证精度，需要使用 $\text{long double}$ 数据类型。

const long double pi=acos(-1.0);
struct complex{
    long double x,y;
    complex(long double x=0.0,long double y=0.0):x(x),y(y){}
    complex operator + (const complex &b){
        return complex(x+b.x,y+b.y);
    }
    complex operator - (const complex &b){
        return complex(x-b.x,y-b.y);
    }
    complex operator * (const complex &b){
        return complex(x*b.x-y*b.y,x*b.y+y*b.x);
    }
};
int rev[MAXN<<2];
int build(int k){
    int n,pos=0;
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    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void FFT(complex *f,int n,int type){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    complex t1,t2;
    for(int i=1;i<n;i<<=1){
        complex w(cos(pi/i),type*sin(pi/i));
        for(int j=0;j<n;j+=(i<<1)){
            complex cur(1.0,0.0);
            _for(k,j,j+i){
                t1=f[k],t2=cur*f[k+i];
                f[k]=t1+t2,f[k+i]=t1-t2;
                cur=cur*w;
            }
        }
    }
    if(type==-1)_for(i,0,n)
    f[i].x/=n,f[i].y/=n;
}
void FFT2(complex *f1,complex *f2,int n){
    FFT(f1,n,1);
    f2[0].x=f1[0].x,f2[0].y=-f1[0].y;
    _for(i,1,n)
    f2[i].x=f1[n-i].x,f2[i].y=-f1[n-i].y;
    complex t1,t2;
    _for(i,0,n){
        t1=f1[i],t2=f2[i];
        f1[i]=complex((t1.x+t2.x)*0.5,(t1.y+t2.y)*0.5);
        f2[i]=complex((t1.y-t2.y)*0.5,(t2.x-t1.x)*0.5);
    }
}
complex f1[MAXN<<2],f2[MAXN<<2],g1[MAXN<<2],g2[MAXN<<2],temp[2][MAXN<<2];
void MTT(int *f,int n1,int *g,int n2,int *ans,int mod){
    int n=build(n1+n2),m=4e4;
    _rep(i,0,n1)f1[i].x=f[i]/m,f1[i].y=f[i]%m;
    _rep(i,0,n2)g1[i].x=g[i]/m,g1[i].y=g[i]%m;
    FFT2(f1,f2,n);FFT2(g1,g2,n);
    complex I(0.0,1.0);
    _for(i,0,n){
        temp[0][i]=f1[i]*g1[i]+I*f2[i]*g1[i];
        temp[1][i]=f1[i]*g2[i]+I*f2[i]*g2[i];
    }
    FFT(temp[0],n,-1);FFT(temp[1],n,-1);
    LL a,b,c;
    _rep(i,0,n1+n2){
a=temp[0][i].x+0.5,b=temp[0][i].y+temp[1][i].x+0.5,c=temp[1][i].y+0.5;
        ans[i]=((a%mod*m%mod*m%mod+b%mod*m%mod+c%mod)%mod+mod)%mod;
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