
2026/01/14 02:21 1/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式 2

FFT

算法简介

$O(n\log n)$ 时间实现多项式点值表示法与系数表示法之间的转化，主要用于加速多项式乘法。

算法实现

假设 $f(x)$ 为 $n-1$ 次多项式，且 n 是 2 的幂次。(如果不满足条件可以将高次系数视为 0)

快速傅里叶变换

考虑如何实现 $O(n\log n)$ 时间根据多项式系数表示法得到多项式点值表示法。

设 $f(x)=a_0+a_1x+a_2x^2+\cdots a_{n-1}x^{n-1}$。

构造辅助函数 $g(x)=a_0+a_2x+\cdots a_{n-2}x^{\frac n2-1},h(x)=a_1+a_3x+\cdots
a_{n-1}x^{\frac n2-1}$。

于是有 $f(x)=g\left(x^2\right)+xh\left(x^2\right)$。

记 $\omega_n=\cos \frac {2\pi}n+\sin \frac {2\pi}ni$，将 $x=\omega_n^k,x=\omega_n^{k+\frac
n2}(k=0,1\cdots \frac n2-1)$ 代入，有

$$f(\omega_n^k)=g(\omega_n^{2k})+\omega_n^kh(\omega_n^{2k})=g(\omega_{\frac
n2}^k)+\omega_n^kh(\omega_{\frac n2}^k)$$

$$f(\omega_n^{k+\frac n2})=g(\omega_n^{2k+n})+\omega_n^{k+\frac
n2}h(\omega_n^{2k+n})=g(\omega_{\frac n2}^k)-\omega_n^kh(\omega_{\frac n2}^k)$$

于是根据 $g(x)$ 的点值表示法 $\{\left(\omega_{\frac n2}^k,g(\omega_{\frac n2}^k)\right)\}$ 以及
$h(x)$ 的点值表示法 $\{\left(\omega_{\frac n2}^k,h(\omega_{\frac n2}^k)\right)\}$

可以 $O(n)$ 时间计算出 $f(x)$ 的点值表示法 $\{\left(\omega_n^k,f(\omega_n^k)\right)|k=0,1\cdots
n-1\}$。

于是利用分治算法，即可 $O(n\log n)$ 解决上述问题。

递归边界为当分治到多项式只剩下一个常数项时，多项式点值表示法即为系数表示法，于是直接返回。

快速傅里叶逆变换

考虑如何实现 $O(n\log n)$ 时间根据多项式系数点值法得到多项式系数表示法。

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

记 $y_i=f(\omega_n^i)$。

假设 $f(x)$ 系数表示法为 ${a_0,a_1\cdots a_{n-1}}$，点值表示法为
$\{(\omega_n^0,y_0),(\omega_n^1,y_1)\cdots (\omega_n^{n-1},y_{n-1})\}$。

构造多项式 $A(x)=\sum_{i=0}^{n-1}y_ix^i$，将 $x=\omega_n^{-k}(k=0,1\cdots n-1)$ 代入，有

$$A\left(\omega_n^{-k}\right)=\sum_{i=0}^{n-1}\omega_n^{-ki}\sum_{j=0}^{n-1}
a_j\omega_n^{ij}=\sum_{i=0}^{n-1}\sum_{j=0}^{n-1} a_j\omega_n^{i(j-
k)}=\sum_{j=0}^{n-1}a_j\sum_{i=0}^{n-1}\omega_n^{i(j-k)}$$

如果 $j=k$，则 $\sum_{i=0}^{n-1}\omega_n^{i(j-k)}=\sum_{i=0}^{n-1}1=n$。

如果 $j\neq k$，则 $\sum_{i=0}^{n-1}\omega_n^{i(j-k)}=\frac{\omega_n^{n(j-
k)}-1}{\omega_n^{(j-k)}-1}=\frac{1-1}{\omega_n^{(j-k)}-1}=0$。

于是有 $A\left(\omega_n^{-k}\right)=na_k$，考虑快速傅里叶变换计算 $A(x)$ 的点值表示法即可快速解
决上述问题。

递归版 FFT 板子

complex temp[MAXN<<2];
void FFT(complex *f,int n,int type){//type=1为正变换，type=-1为逆变换，逆变换最终
结果需要除以n
 if(n==1)return;
 int m=n>>1;
 memcpy(temp,f,sizeof(complex)*n);
 for(int i=0;i<n;i+=2)
 f[i>>1]=temp[i],f[(i>>1)+m]=temp[i+1];
 complex *f1=f,*f2=f+m;
 FFT(f1,m,type);FFT(f2,m,type);
 complex cur(1.0,0.0),w(cos(2.0*pi/n),type*sin(2.0*pi/n));
 for(int i=0;i<m;i++){
 temp[i]=f1[i]+cur*f2[i];
 temp[i+m]=f1[i]-cur*f2[i];
 cur=cur*w;
 }
 memcpy(f,temp,sizeof(complex)*n);
}

算法优化

蝴蝶变换

考虑倍增模拟分治过程，于是需要调整运算顺序。观察下面分治过程

$$\{x_0,x_1,x_2,x_3,x_4,x_5,x_6,x_7\}$$

2026/01/14 02:21 3/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

$$\{x_0,x_2,x_4,x_6\},\{x_1,x_3,x_5,x_7\}$$

$$\{x_0,x_4\},\{x_2,x_6\},\{x_1,x_5\},\{x_3,x_7\}$$

$$\{x_0\},\{x_4\},\{x_2\},\{x_6\},\{x_1\},\{x_5\},\{x_3\},\{x_7\}$$

发现将 x_i 的下标用二进制表示，然后将其翻转就可以得到 x_i 的最终位置。例如 $3=011,6=110$，于
是 x_3 与 x_6 位置互换。

非递归版 FFT 板子

int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;
 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;
 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].x/=n;
}

算法练习

习题一

洛谷p3803

题意

给定两个多项式的系数表示法，求两个多项式乘积的系数表示法。

https://www.luogu.com.cn/problem/P3803
https://www.luogu.com.cn/problem/P3803

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

题解

记这两个多项式为 $g(x)=b_0+b_1x+\cdots b_nx^n,h(x)=c_0+c_1x+\cdots c_mx^m$，所求多项式为
$f(x)=a_0+a_1x+\cdots a_{n+m}x^{n+m}$。

设 s 是 2 的幂次且 $\frac s2\le n+m\lt s$。

对 $g(x)=b_0+b_1x+\cdots b_nx^n+0x^{n+1}\cdots +0x^{s-1}$ 套用快速傅里叶变换求出点值表示
法 $\{(w_s^0,g_0)\cdots (w_s^{s-1},g_{s-1})\}$。

同样对 $h(x)$ 进行上述操作，于是得到 $f(x)$ 的点值表示法 $\{(w_s^0,g_0h_0)\cdots
(w_s^{s-1},g_{s-1}h_{s-1})\}$。

再根据快速傅里叶逆变换，即可得到 $f(x)$ 的系数表示法，时间复杂度 $O(s\log s)$。

const int MAXN=1e6+5;
const double pi=acos(-1.0);
struct complex{
 double x,y;
 complex(double x=0.0,double y=0.0):x(x),y(y){}
 complex operator + (const complex &b){
 return complex(x+b.x,y+b.y);
 }
 complex operator - (const complex &b){
 return complex(x-b.x,y-b.y);
 }
 complex operator * (const complex &b){
 return complex(x*b.x-y*b.y,x*b.y+y*b.x);
 }
}a[MAXN<<2],b[MAXN<<2];
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;
 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;

2026/01/14 02:21 5/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].x/=n;
}
int main()
{
 int n1=read_int(),n2=read_int(),n=build(n1+n2);
 _rep(i,0,n1)
 a[i].x=read_int();
 _rep(i,0,n2)
 b[i].x=read_int();
 FFT(a,n,1);FFT(b,n,1);
 _for(i,0,n)
 a[i]=a[i]*b[i];
 FFT(a,n,-1);
 _rep(i,0,n1+n2)
 space((int)(a[i].x+0.5));
 return 0;
}

优化

考虑式子 $\left(g(x)+h(x)i\right)^2=g^2(x)-h^2(x)+2g(x)h(x)i=g^2(x)-h^2(x)+2f(x)i$。

于是将 $g(x)$ 作为实部，$h(x)$ 作为虚部，两次 FFT 计算出 $\left(g(x)+h(x)i\right)^2$ 表达式
系数，即可得到 $f(x)$ 系数。

const int MAXN=1e6+5;
const double pi=acos(-1.0);
struct complex{
 double x,y;
 complex(double x=0.0,double y=0.0):x(x),y(y){}
 complex operator + (const complex &b){
 return complex(x+b.x,y+b.y);
 }
 complex operator - (const complex &b){
 return complex(x-b.x,y-b.y);
 }
 complex operator * (const complex &b){
 return complex(x*b.x-y*b.y,x*b.y+y*b.x);
 }
}a[MAXN<<2];
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;
 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;
 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].y/=n;
}
int main()
{
 int n1=read_int(),n2=read_int(),n=build(n1+n2);
 _rep(i,0,n1)
 a[i].x=read_int();
 _rep(i,0,n2)
 a[i].y=read_int();
 FFT(a,n,1);
 _for(i,0,n)
 a[i]=a[i]*a[i];
 FFT(a,n,-1);
 _rep(i,0,n1+n2)
 space((int)(a[i].y/2+0.5));
 return 0;
}

应用

洛谷p1919

进行高精度乘法时，将 10 进制数视为 $x=10$ 多项式，进行多项式乘法后考虑进位情况即可。

const int MAXN=1e6+5;
const double pi=acos(-1.0);
struct complex{
 double x,y;

https://www.luogu.com.cn/problem/P1919
https://www.luogu.com.cn/problem/P1919

2026/01/14 02:21 7/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 complex(double x=0.0,double y=0.0):x(x),y(y){}
 complex operator + (const complex &b){
 return complex(x+b.x,y+b.y);
 }
 complex operator - (const complex &b){
 return complex(x-b.x,y-b.y);
 }
 complex operator * (const complex &b){
 return complex(x*b.x-y*b.y,x*b.y+y*b.x);
 }
}a[MAXN<<2],b[MAXN<<2];
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;
 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;
 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].x/=n;
}
char s1[MAXN<<2],s2[MAXN<<2];
int ans[MAXN<<2];
int main()
{
 scanf("%s%s",s1,s2);
 int n1=strlen(s1)-1,n2=strlen(s2)-1,n=build(n1+n2);
 _rep(i,0,n1)
 a[i].x=s1[n1-i]-'0';
 _rep(i,0,n2)
 b[i].x=s2[n2-i]-'0';
 FFT(a,n,1);FFT(b,n,1);
 _for(i,0,n)
 a[i]=a[i]*b[i];
 FFT(a,n,-1);

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

 _for(i,0,n){
 ans[i]+=(int)(a[i].x+0.5);
 ans[i+1]+=ans[i]/10;
 ans[i]%=10;
 }
 while(n>=0&&!ans[n])n--;
 if(n==-1)putchar('0');
 else
 while(n>=0)putchar(ans[n--]+'0');
 return 0;
}

习题二

洛谷p3338

题意

给定 $a_0,a_1\cdots a_{n-1}$，求

$$E_i=\sum_{j=0}^{i-1} \frac {a_j}{(i-j)^2}-\sum_{j=i+1}^{n-1} \frac {a_j}{(i-j)^2}(i=0,1\cdots
n-1)$$

题解

构造

$$b_i= \begin{cases} \cfrac 1{i^2}, & n\gt 0\\ 0, & n=0\\ -\cfrac 1{i^2}, & n\lt 0\\ \end{cases} $$

于是有 $E_i=\sum_{j=0}^{n-1} a_jb_{i-j}$。同时为防止访问负数下标，令 b_i 偏移 $n-1$ 位。

最后套用 FFT 计算即可，时间复杂度 $O(n\log n)$。

const int MAXN=1e5+5;
const double pi=acos(-1.0);
struct complex{
 double x,y;
 complex(double x=0.0,double y=0.0):x(x),y(y){}
 complex operator + (const complex &b){
 return complex(x+b.x,y+b.y);
 }
 complex operator - (const complex &b){
 return complex(x-b.x,y-b.y);
 }
 complex operator * (const complex &b){
 return complex(x*b.x-y*b.y,x*b.y+y*b.x);

https://www.luogu.com.cn/problem/P3338
https://www.luogu.com.cn/problem/P3338

2026/01/14 02:21 9/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
};
int rev[MAXN<<3];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;
 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;
 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].x/=n;
}
complex f[MAXN<<3],g[MAXN<<3];
int main()
{
 int n=read_int();
 _for(i,0,n)
 scanf("%lf",&f[i].x);
 _for(i,1,n)
 g[n-1+i].x=1.0/i/i,g[n-1-i].x=-1.0/i/i;
 g[n-1].x=0;
 int t=build(3*n);
 FFT(f,t,1);FFT(g,t,1);
 _for(i,0,t)
 f[i]=f[i]*g[i];
 FFT(f,t,-1);
 _for(i,0,n)
 printf("%.3lf\n",f[n-1+i].x);
 return 0;
}

习题三

洛谷p3723

https://www.luogu.com.cn/problem/P3723
https://www.luogu.com.cn/problem/P3723

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

题意

给定两个长度为 n 的序列 a,b。其中 b 可以循环移动，求 $\min\left(\sum_{i=0}^{n-1}(a_i-
b_i+x)^2\right)$，$x$ 为任意整数。

题解

$$\sum_{i=0}^{n-1}(a_i-b_i+x)^2=\sum_{i=0}^{n-1} \left(a_i^2+b_i^2-2a_ib_i+2(a_i-
b_i)x+x^2\right)=\sum_{i=0}^{n-1}\left(a_i^2+b_i^2\right)+2x\sum_{i=0}^{n-1}(a_i-
b_i)+nx^2-2\sum_{i=0}^{n-1}a_ib_i$$

发现不管 b 如何循环移动，$\sum_{i=0}^{n-1}\left(a_i^2+b_i^2\right)$ 和 $\sum_{i=0}^{n-1}(a_i-
b_i)$ 为定值。

于是 $\sum_{i=0}^{n-1}\left(a_i^2+b_i^2\right)+2x\sum_{i=0}^{n-1}(a_i-b_i)+nx^2$ 为系数确定
的二次函数，可以直接求最小值，问题转化为求 $\max\left(\sum_{i=0}^{n-1}a_ib_i\right)$。

考虑倍长 b 数组，再反转 a 数组，于是式子转化为

$$\max_{0\le k\lt n}\left(\sum_{i=0}^{n-1}a_{n-1-i}b_{i+k}\right)$$

令 $c_i=\sum_{j=0}^i a_jb_{i-j}$，于是式子转化为

$$\max_{0\le k\lt n} c_{n-1+k}$$

考虑 FFT 或 NTT 求解，时间复杂度 $O(n\log n)$。

const int MAXN=5e4+5;
const double pi=acos(-1.0);
struct complex{
 double x,y;
 complex(double x=0.0,double y=0.0):x(x),y(y){}
 complex operator + (const complex &b){
 return complex(x+b.x,y+b.y);
 }
 complex operator - (const complex &b){
 return complex(x-b.x,y-b.y);
 }
 complex operator * (const complex &b){
 return complex(x*b.x-y*b.y,x*b.y+y*b.x);
 }
};
int rev[MAXN<<3];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));

2026/01/14 02:21 11/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;
 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;
 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].x/=n;
}
int a[MAXN],b[MAXN];
complex f[MAXN<<3],g[MAXN<<3];
int main()
{
 int n=read_int(),m=read_int();
 LL ans,s1=0,s2=0,s3=0;
 _for(i,0,n)a[i]=read_int(),s1+=a[i]*a[i],s2+=a[i];
 _for(i,0,n)b[i]=read_int(),s1+=b[i]*b[i],s2-=b[i];
 double x1=floor(-1.0*s2/n),x2=ceil(-1.0*s2/n);
 ans=s1+(int)min(n*x1*x1+2*s2*x1,n*x2*x2+2*s2*x2);
 reverse(a,a+n);
 int N=build(3*n);
 _for(i,0,n)f[i].x=a[i],g[i+n].x=g[i].x=b[i];
 FFT(f,N,1);FFT(g,N,1);
 _for(i,0,N)f[i]=f[i]*g[i];
 FFT(f,N,-1);
 _rep(i,n-1,2*n-1)
 s3=max(s3,(LL)(f[i].x+0.5));
 enter(ans-2*s3);
 return 0;
}

习题四

2020-2021 BUAA ICPC Team Supplementary Training 02 D

题意

http://codeforces.com/gym/101234/problem/D

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

给定一棵 n 个节点的树。每次随机选择一个结点，删除该结点以及与该点相连的边，并得 s 分，s
表示删除该结点前该结点所在树的大小。

不断重复上述操作，直到删除所有结点。问最后总得分的期望值。

题解

考虑每个点对 $(u,v)(u\neq v)$，定义 $\text{dis}(u,v)=u$ 到 v 路径上的结点数(包含端
点)，cnt_d 表示满足 $\text{dis}_{u,v}=d$ 的点对数。

于是 (u,v) 产生 1 个贡献的条件为 u 或 v 为该路径上第一个删除的点，概率为 $\frac 2d$。

而点对 (u,u) 一定产生 1 个贡献。

于是最终答案为 $n+\sum_{i=2}^n\frac 2d\times \text{cnt}_d$，考虑点分治统计路径长
度，FFT 合并答案。

统计答案时如果不断合并子树路径并求卷积将使得每层分治时间复杂度退化为 $O(n^2)$。

考虑每层分治直接对所有过根节点结点路径求卷积，然后再减去每个子树中的不合法路径。总时间复杂度
$O(n\log^2 n)$。

const int MAXN=1e5+5,Mod=1e9+7;
const double pi=acos(-1.0);
struct complex{
 double x,y;
 complex(double x=0.0,double y=0.0):x(x),y(y){}
 complex operator + (const complex &b){
 return complex(x+b.x,y+b.y);
 }
 complex operator - (const complex &b){
 return complex(x-b.x,y-b.y);
 }
 complex operator * (const complex &b){
 return complex(x*b.x-y*b.y,x*b.y+y*b.x);
 }
};
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;

2026/01/14 02:21 13/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;
 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].x/=n;
}
struct Edge{
 int to,next;
}edge[MAXN<<1];
int n,edge_cnt,head[MAXN];
int sz[MAXN],mson[MAXN],tot_sz,root,root_sz;
int dis[MAXN],c1[MAXN],c2[MAXN],ans[MAXN],msz;
bool vis[MAXN];
void Insert(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
void find_root(int u,int fa){
 sz[u]=1;mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 find_root(v,u);
 sz[u]+=sz[v];
 mson[u]=max(mson[u],sz[v]);
 }
 mson[u]=max(mson[u],tot_sz-sz[u]);
 if(mson[u]<root_sz){
 root=u;
 root_sz=mson[u];
 }
}
void dfs1(int u,int fa){
 dis[u]=dis[fa]+1;c1[dis[u]]++;msz=max(msz,dis[u]);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 dfs1(v,u);
 }
}
void dfs2(int u,int fa){

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

 c2[dis[u]]++;msz=max(msz,dis[u]);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 dfs2(v,u);
 }
}
complex f[MAXN<<2];
void calc(int *c,int n_0,int k){
 int n=build(n_0<<1);
 _rep(i,0,n_0)f[i].x=c[i];
 FFT(f,n,1);
 _for(i,0,n)f[i]=f[i]*f[i];
 FFT(f,n,-1);
 _for(i,0,n)ans[i]=(ans[i]+k*(LL)(f[i].x+0.5))%Mod;
 _for(i,0,n)f[i].x=f[i].y=0.0;
}
void query(int u){
 msz=0,c1[dis[u]=0]++;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 dfs1(v,u);
 }
 calc(c1,msz,1);
 _rep(i,0,msz)c1[i]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 msz=0;
 dfs2(v,u);
 calc(c2,msz,-1);
 _rep(i,1,msz)c2[i]=0;
 }
}
void solve(int u){
 int cur_sz=tot_sz;
 vis[u]=true;query(u);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 tot_sz=sz[v]>sz[u]?cur_sz-sz[u]:sz[v];root_sz=MAXN;
 find_root(v,u);
 solve(root);
 }
}

2026/01/14 02:21 15/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

int quick_pow(int a,int b){
 int ans=1;
 while(b){
 if(b&1)
 ans=1LL*ans*a%Mod;
 a=1LL*a*a%Mod;
 b>>=1;
 }
 return ans;
}
int main()
{
 int n=read_int(),u,v;
 _for(i,1,n){
 u=read_int(),v=read_int();
 Insert(u,v);Insert(v,u);
 }
 root_sz=MAXN,tot_sz=n;
 find_root(1,0);
 solve(root);
 int s=0;
 _for(i,0,n)
 s=(s+1LL*ans[i]*quick_pow(i+1,Mod-2))%Mod;
 _rep(i,1,n)
 s=1LL*s*i%Mod;
 enter((s+Mod)%Mod);
 return 0;
}

NTT

算法简介

$O(n\log n)$ 时间实现多项式特定模数意义下的点值表示法与系数表示法之间的转化，无精度误差。

理论基础

阶

定义

设 $n\gt 1,gcd(a,n)=1$，称 $a^x\equiv 1\pmod n$ 的最小正整数解为 a 对 n 的阶，记为
$\delta_n(a)$。

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

性质

设 $a^x\equiv 1\pmod n$，则 $\delta_n(a)\mid x$。特别的，$\delta_n(a)\mid \varphi(n)$。

原根

定义

如果 (n,a) 满足 $a\gt 1,\delta_n(a)=\varphi(n)$，则称 a 为 n 的原根。

性质

一个正整数 n 具有原根的充要条件为 $n=2,4,p^\alpha,2p^\alpha$，其中 p 为素数1.
如果 n 具有原根，则 n 具有 $\varphi\left(\varphi(n)\right)$ 个原根2.
如果 g 为 n 的原根，则 $1,g^1,g^2\cdots g^{\varphi(n)}$ 构成 n 的最简剩余系3.
设 $\varphi(n)=p_1^{\alpha_1}p_2^{\alpha_2}\cdots p_k^{\alpha_k}$，且 $n\nmid a^{\frac4.
{\varphi(n)}{p_i}}-1(i=1,2\cdots k)$，则 a 为 n 的原根

算法实现

当模数是素数 p 时，记 $\omega_n\equiv g^{\frac {p-1}n}\pmod p$，发现 ω_n 满足以下性
质

$\omega_n^{2k}=\omega_{\frac n2}^k$1.
$\omega_n^{k+\frac n2}\equiv -\omega_n^k\pmod p$2.
$p-1 \nmid k,\sum_{i=0}^{n-1}\omega_n^{ki} \equiv 0\pmod p$3.

于是考虑用 $g^{\frac {p-1}n}$ 替代 FFT 中的 ω_n，其余过程与 FFT 类同。

注意算法过程中需要保证 $\frac {p-1}n$ 为整数，故需要选择含 2 的幂次较多的模数 p。

一般常见模数为 $998244353,1004535809,469762049$，这三个数的原根均包含 3。

const int MAXN=1e6+5,Mod=998244353,G=3,Inv_G=332748118;
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void NTT(int *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 int t1,t2;

2026/01/14 02:21 17/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 for(int i=1;i<n;i<<=1){
 int w=quick_pow(type==1?G:Inv_G,(Mod-1)/(i<<1));
 for(int j=0;j<n;j+=(i<<1)){
 int cur=1;
 _for(k,j,j+i){
 t1=f[k],t2=1LL*cur*f[k+i]%Mod;
 f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
 cur=1LL*cur*w%Mod;
 }
 }
 }
 if(type==-1){
 int div=quick_pow(n,Mod-2);
 _for(i,0,n)
 f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
 }
}

算法练习

洛谷p3321

题意

给定一个集合 S，问从集合 S 中依次选出 n 个数乘积模 p 意义下恰好为 x 的方案数。

数据保证 $p\le 8000,n\le 10^9,1\le x\lt p$，且 p 为素数，最后答案对 1004535809 取模。

题解

先考虑将乘法转化为加法。素数 p 一定有原根 g，考虑将 S 中的每个数表示为 p 的幂次，且
$x=g^y$。

于是合法方案转化为幂次和模 $p-1$ 意义下恰好为 y 的方案。

令 $f_{i,j}$ 表示依次选择 i 个数幂次和恰好为 j 的方案，于是有递推式 $f_{i,j}=\sum_{k=0}^j
f_{i-1,j-k}f_{1,k}$。

考虑 NTT 加速卷积过程。由于只关注模 $p-1$ 意义的和，于是可以将每次卷积后大于 $p-1$ 的
项转移到取模后的结果中。

于是得到一个暴力递推算法，时间复杂度为 $O(np\log p)$。

考虑快速幂优化递推过程，于是时间复杂度降为 $O(p\log p\log n)$。

const int MAXP=8005,Mod=1004535809,G=3,Inv_G=334845270;
int quick_pow(int a,int b,int mod){
 int ans=1;

https://www.luogu.com.cn/problem/P3321
https://www.luogu.com.cn/problem/P3321

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

 while(b){
 if(b&1)
 ans=1LL*ans*a%mod;
 a=1LL*a*a%mod;
 b>>=1;
 }
 return ans;
}
int rev[MAXP<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void NTT(int *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 int t1,t2;
 for(int i=1;i<n;i<<=1){
 int w=quick_pow(type==1?G:Inv_G,(Mod-1)/(i<<1),Mod);
 for(int j=0;j<n;j+=(i<<1)){
 int cur=1;
 _for(k,j,j+i){
 t1=f[k],t2=1LL*cur*f[k+i]%Mod;
 f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
 cur=1LL*cur*w%Mod;
 }
 }
 }
 if(type==-1){
 int div=quick_pow(n,Mod-2,Mod);
 _for(i,0,n)
 f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
 }
}
int lg[MAXP];
vector<int> ps;
bool check(int x,int p){
 _for(i,0,ps.size()){
 if(quick_pow(x,(p-1)/ps[i],p)==1)
 return false;
 }
 return true;
}
void get_log(int p){
 int temp=p-1,g;
 for(int i=2;i*i<=temp;i++){
 if(temp%i==0){

2026/01/14 02:21 19/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 ps.push_back(i);
 while(temp%i==0)temp/=i;
 }
 }
 if(temp!=1)ps.push_back(temp);
 _for(i,2,p){
 if(check(i,p)){
 g=i;
 break;
 }
 }
 for(int i=0,j=1;i<p-1;i++,j=j*g%p)
 lg[j]=i;
}
int temp[MAXP<<2];
void quick_pow(int *f,int n,int k,int mod){
 memcpy(temp,f,sizeof(temp));
 f[0]=1;
 _for(i,1,n)f[i]=0;
 while(k){
 NTT(temp,n,1);
 if(k&1){
 NTT(f,n,1);
 _for(i,0,n)
 f[i]=1LL*f[i]*temp[i]%Mod;
 NTT(f,n,-1);
 }
 _for(i,0,n)
 temp[i]=1LL*temp[i]*temp[i]%Mod;
 NTT(temp,n,-1);
 _for(i,mod,n){
 f[i%mod]=(f[i%mod]+f[i])%Mod;
 temp[i%mod]=(temp[i%mod]+temp[i])%Mod;
 f[i]=temp[i]=0;
 }
 k>>=1;
 }
}
int cnt[MAXP<<2];
int main()
{
 int n=read_int(),p=read_int(),x=read_int(),s=read_int();
 get_log(p);
 while(s--){
 int v=read_int();
 if(!v)continue;
 cnt[lg[v]]++;
 }
 int m=build(p<<1);
 quick_pow(cnt,m,n,p-1);
 enter(cnt[lg[x]]);

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

 return 0;
}

MTT

洛谷p4245

算法简介

$O(n\log n)$ 时间实现多项式任意模数意义下乘法。

算法实现

三模数NTT

设所求多项式系数表示法为 $\{a_0,a_1\cdots a_{n-1}\}$，考虑取用三个不同的大模数
$469762049,998244353,1004535809$。

跑三轮 NTT，可以得到三组同余方程，利用中国剩余定理将同余方程合并，可以得到 $a_i\equiv
b_i\pmod {471064322751194440790966273}$

如果 $0\le a_i\le 10^{26}\lt 471064322751194440790966273$，显然有 $a_i=b_i$。

设两条多项式的最高次幂为 n，系数最大值为 v，则两多项式相乘得到的多项式的最大系数不超过
$(n+1)v^2$。

故绝大多数题目的数据范围都满足上述约束条件。

关于同余方程的合并，为防止整型溢出，考虑先合并其中两条，设结果为 $a_i \equiv A\pmod M$，令
$a_i=A+MK$，代入第三条同余方程。

于是有 $A+MK\equiv t\pmod m$。移项，得 $K\equiv (t-A)M^{-1}\pmod m$。

由此解得 A 与 K 后即可在乘法不溢出得情况下计算 a_i 在给定模数意义下的结果。

int quick_pow(int a,int b,int mod){
 int ans=1;
 while(b){
 if(b&1)
 ans=1LL*ans*a%mod;
 a=1LL*a*a%mod;
 b>>=1;
 }
 return ans;
}
LL mul(LL a,int b,LL mod){

https://www.luogu.com.cn/problem/P4245
https://www.luogu.com.cn/problem/P4245

2026/01/14 02:21 21/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 LL ans=0;
 while(b){
 if(b&1)
 ans=(ans+a)%mod;
 b>>=1;
 a=(a<<1)%mod;
 }
 return ans;
}
const int m[3]={469762049,998244353,1004535809},G=3;
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void NTT(int *f,int n,int type,int mod){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 int t1,t2,Inv_G=quick_pow(G,mod-2,mod);
 for(int i=1;i<n;i<<=1){
 int w=quick_pow(type==1?G:Inv_G,(mod-1)/(i<<1),mod);
 for(int j=0;j<n;j+=(i<<1)){
 int cur=1;
 _for(k,j,j+i){
 t1=f[k],t2=1LL*cur*f[k+i]%mod;
 f[k]=(t1+t2)%mod,f[k+i]=(t1-t2)%mod;
 cur=1LL*cur*w%mod;
 }
 }
 }
 if(type==-1){
 int div=quick_pow(n,mod-2,mod);
 _for(i,0,n)
 f[i]=(1LL*f[i]*div%mod+mod)%mod;
 }
}
int f2[MAXN<<2],g2[MAXN<<2],temp[3][MAXN<<2];
void MTT(int *f,int n1,int *g,int n2,int *ans,int mod){
 int n=build(n1+n2);
 _for(i,0,3){
 memcpy(f2,f,sizeof(f2));memcpy(g2,g,sizeof(g2));
 NTT(f2,n,1,m[i]);NTT(g2,n,1,m[i]);
 _for(j,0,n)temp[i][j]=1LL*f2[j]*g2[j]%m[i];
 NTT(temp[i],n,-1,m[i]);
 }
 LL A,K,M=1LL*m[0]*m[1];
 int
inv1=quick_pow(m[1],m[0]-2,m[0]),inv2=quick_pow(m[0],m[1]-2,m[1]),inv3=quick

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

_pow(M%m[2],m[2]-2,m[2]);
 _rep(i,0,n1+n2){
A=(mul(1LL*temp[0][i]*m[1]%M,inv1,M)+mul(1LL*temp[1][i]*m[0]%M,inv2,M))%M;
 K=((temp[2][i]-A)%m[2]+m[2])%m[2]*inv3%m[2];
 ans[i]=(((K%mod)*(M%mod)+A%mod)%mod+mod)%mod;
 }
}

优化版拆系数FFT

考虑提高 FFT 精度。取 $m=\sqrt v$($v=$ 给定多项式系数的最大值)，进行下述转化

$$f(x)=f_1(x)m+f_2(x),g(x)=g_1(x)m+g_2(x)$$

于是有

$$f(x)g(x)=f_1(x)g_1(x)m^2+(f_2(x)g_1(x)+f_1(x)g_2(x))m+f_2(x)g_2(x)$$

发现只要求出 $f_1(x)g_1(x),f_2(x)g_1(x),f_1(x)g_2(x),f_2(x)g_2(x)$ 这四条多项式的系数即可求出
$f(x)g(x)$ 的系数。

同时 $f_1(x),f_2(x),g_1(x),g_2(x)$ 系数范围为 $[0,\sqrt v]$，使得计算过程中浮点误差减小。

接下来考虑如何快速计算 $f_1(x)g_1(x),f_2(x)g_1(x),f_1(x)g_2(x),f_2(x)g_2(x)$ 这四条多项式的系数。

首先，构造多项式 $P(x)=A(x)+B(x)i,Q(x)=A(x)-B(x)i$，不难验证有 $P(x)=\overline{Q(\overline x)}$。

于是根据 $P(x)$ 点值表示法可以 $O(n)$ 求出 $Q(x)$ 点值表示法，同时又可以 $O(n)$ 求解 $A(x)=\frac
{P(x)+Q(x)}2,B(x)=\frac {P(x)-Q(x)}{2i}$。

令 $A=f_1(x),B=f_2(x)$ 于是可以一次 FFT 求出 $f_1(x),f_2(x)$ 的点值表示法。

同理可以一次 FFT 求出 $g_1(x),g_2(x)$ 的点值表示法。

再次构造多项式 $P(x)=f_1(x)g_1(x)+f_2(x)g_1(x)i,Q(x)=f_1(x)g_2(x)+f_2(x)g_2(x)i$。

根据 $f_1(x),f_2(x),g_1(x),g_2(x)$ 的点值表示法可以 $O(n)$ 求出 $P(x),Q(x)$ 的点值表示法。

再次对 $P(x),Q(x)$ 使用 FFT 即可求出 $P(x),Q(x)$ 的系数表示法，恰好对应所求的
$f_1(x)g_1(x),f_2(x)g_1(x),f_1(x)g_2(x),f_2(x)g_2(x)$。

此方法合计只使用了四次 FFT，算法效率优于三模数 NTT。

为保证精度，需要使用 long double 数据类型。

const long double pi=acos(-1.0);
struct complex{
 long double x,y;
 complex(long double x=0.0,long double y=0.0):x(x),y(y){}
 complex operator + (const complex &b){
 return complex(x+b.x,y+b.y);

2026/01/14 02:21 23/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 complex operator - (const complex &b){
 return complex(x-b.x,y-b.y);
 }
 complex operator * (const complex &b){
 return complex(x*b.x-y*b.y,x*b.y+y*b.x);
 }
};
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;
 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;
 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].x/=n,f[i].y/=n;
}
void FFT2(complex *f1,complex *f2,int n){
 FFT(f1,n,1);
 f2[0].x=f1[0].x,f2[0].y=-f1[0].y;
 _for(i,1,n)
 f2[i].x=f1[n-i].x,f2[i].y=-f1[n-i].y;
 complex t1,t2;
 _for(i,0,n){
 t1=f1[i],t2=f2[i];
 f1[i]=complex((t1.x+t2.x)*0.5,(t1.y+t2.y)*0.5);
 f2[i]=complex((t1.y-t2.y)*0.5,(t2.x-t1.x)*0.5);
 }
}
complex f1[MAXN<<2],f2[MAXN<<2],g1[MAXN<<2],g2[MAXN<<2],temp[2][MAXN<<2];
void MTT(int *f,int n1,int *g,int n2,int *ans,int mod){
 int n=build(n1+n2),m=4e4;
 _rep(i,0,n1)f1[i].x=f[i]/m,f1[i].y=f[i]%m;
 _rep(i,0,n2)g1[i].x=g[i]/m,g1[i].y=g[i]%m;

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

 FFT2(f1,f2,n);FFT2(g1,g2,n);
 complex I(0.0,1.0);
 _for(i,0,n){
 temp[0][i]=f1[i]*g1[i]+I*f2[i]*g1[i];
 temp[1][i]=f1[i]*g2[i]+I*f2[i]*g2[i];
 }
 FFT(temp[0],n,-1);FFT(temp[1],n,-1);
 LL a,b,c;
 _rep(i,0,n1+n2){
a=temp[0][i].x+0.5,b=temp[0][i].y+temp[1][i].x+0.5,c=temp[1][i].y+0.5;
 ans[i]=((a%mod*m%mod*m%mod+b%mod*m%mod+c%mod)%mod+mod)%mod;
 }
}

FWT

算法简介

$O(n\log n)$ 时间解决形如这样的问题 $C_i=\sum_{i=j\oplus k}A_jB_k$，其中 \oplus 为某种位运算符。

算法实现

该算法基本按照以下四步执行：

构造函数 $FWT[A]_i$，使得 $FWT[C]_i=FWT[A]_i\times FWT[B]_i$1.
根据 A_i,B_i 在 $O(n\log n)$ 时间计算出 $FWT[A]_i,FWT[B]_i(i=0,1,\cdots n-1)$2.
根据 $FWT[A]_i,FWT[B]_i$ 在 $O(n)$ 时间计算出 $FWT[C]_i(i=0,1,\cdots n-1)$3.
根据 $FWT[C]_i$ 在 $O(n\log n)$ 时间反演出 $C_i(i=0,1,\cdots n-1)$4.

或运算

构造函数 $FWT[A]_i=\sum_{j|i=i}A_j$，于是有

$$FWT[A]_i\times FWT[B]_i=\sum_{j|i=i}A_j\sum_{k|i=i}B_k=\sum_{(j|k)|i=i}A_jB_k=FWT[C]_i$$

接下来需要快速计算出 $FWT[A]_i,FWT[B]_i(i=0,1,\cdots n-1)$。利用分治算法，有

$$FWT[A]=\text{Merge}(FWT[A_0],FWT[A_0]+FWT[A_1])$$

其中 A_0 表示当前序列 A 中下标最高位为 0 的区间(左半区间)，A_1 表示当前序列 A 中下标最
高位为 1 的区间(右半区间)。

$FWT[A_0]+FWT[A_1]$ 可以理解为对应位置相加，Merge 表示序列拼接。

注意分治算法是先抹去最高位，计算出 A_0,A_1，再补上最高位，重新计算结果的。

显然 A_0 之间补上最高位后贡献不变，A_1 之间贡献也不变，唯一变化的是补上最高位后 A_0 的贡
献需要计入 A_1 中，于是上式成立。

2026/01/14 02:21 25/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

接下来考虑反演。反演考虑上述过程的逆运算即可，于是有

$$A=\text{Merge}(A_0,A_1-A_0)$$

void OR(int *f,int n,int type){
 for(int i=1;i<n;i<<=1)
 for(int j=0;j<n;j+=(i<<1))
 _for(k,j,j+i)
 f[k+i]=(f[k+i]+type*f[k])%Mod;
}

与运算

构造函数 $FWT[A]_i=\sum_{j\And i=i}A_j$，于是有

$$FWT[A]_i\times FWT[B]_i=\sum_{j\And i=i}A_j\sum_{k\And i=i}B_k=\sum_{(j\And k)\And
i=i}A_jB_k=FWT[C]_i$$

类似的，有

$$FWT[A]=\text{Merge}(FWT[A_0]+FWT[A_1],FWT[A_1])$$

$$A=\text{Merge}(A_0-A_1,A_1)$$

void AND(int *f,int n,int type){
 for(int i=1;i<n;i<<=1)
 for(int j=0;j<n;j+=(i<<1))
 _for(k,j,j+i)
 f[k]=(f[k]+type*f[k+i])%Mod;
}

异或运算

定义 $a\otimes b$ 表示 $a\And b$ 二进制下的 1 的个数模 2 意义下数值。

于是有 $(i\otimes j)\oplus (i\otimes k)=i\otimes (j\oplus k)$，构造函数 $FWT[A]_i=\sum_{j\otimes
i=0}A_j-\sum_{j\otimes i=1}A_j$。

$$FWT[A]_i\times FWT[B]_i=(\sum_{j\otimes i=0}A_j-\sum_{j\otimes i=1}A_j)(\sum_{k\otimes
i=0}B_k-\sum_{k\otimes i=1}B_k)=\sum_{(j\oplus k)\otimes i=0}A_jB_k-\sum_{(j\oplus k)\otimes
i=1}A_jB_k=FWT[C]_i$$

接下来需要快速计算出 $FWT[A]_i,FWT[B]_i(i=0,1,\cdots n-1)$。利用分治算法，考虑左右区间之间的相互
贡献，有

$$FWT[A]=\text{Merge}(FWT[A_0]+FWT[A_1],FWT[A_0]-FWT[A_1])$$

因为，A_0 补上最高位后相互间 \And 运算结果二进制下的 1 的个数不变，于是对自己贡献仍然为正。

但 A_1 补上最高位后相互间 \And 运算结果二进制下的 1 的个数 $+1$，导致奇偶性改变，对自己贡

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

献变为负。

同时补上最高位后 A_0 A_1 间 \And 运算结果二进制下的 1 的个数不变，于是相互贡献为正。

接下来考虑反演式，有

$$FWT[A]=\text{Merge}\left(\frac{FWT[A_0]+FWT[A_1]}2,\frac{FWT[A_0]-FWT[A_1]}2\right)$$

void XOR(int *f,int n,int type){
 int t1,t2,t3=type==1?1:quick_pow(2,Mod-2);
 for(int i=1;i<n;i<<=1)
 for(int j=0;j<n;j+=(i<<1))
 _for(k,j,j+i){
 t1=f[k],t2=f[k+i];
 f[k]=1LL*(t1+t2)*t3%Mod;
 f[k+i]=1LL*(t1-t2)*t3%Mod;
 }
}

算法练习

牛客暑期多校(第二场) E 题

题意

给定 n 个数 $a_1,a_2\cdots a_n(0\le a_i\lt 2^{18})$。

要求输出 n 个数，第 i 个数表示取 i 个数(可以重复取)可以得到的最大值。

题解

记 $f_{i,j}$ 表示选取 i 个数能否取到数值 j，ans_i 表示选取 i 个数能取到的最大
值，$\omega=18$。

显然有 $f_{2,i}=\sum_{i=j\oplus k}f_{1,j}f_{1,k}$。事实上有递推式 $f_{n,i}=\sum_{i=j\oplus
k}f_{n-1,j}f_{1,k}$

注意 $f_{i,j}$ 只考虑是否能取到，不需要统计方案数，于是每轮计算后考虑将不为 0 的 $f_{i,j}$ 都赋
值为 1。这样可以防止最终计算结果溢出。

于是时间复杂度变为 $O(n+m\omega 2^\omega)$，其中 m 为卷积次数。现在考虑最大有效卷积次数。

不难发现 $ans_i\ge ans_{i-2}$，因为 ans_i 只需要选取 $i-2$ 个 ans_{i-2} 选取的数后再选择两个重
复的数即可保证 $ans_i\ge ans_{i-2}$。

接下来考虑 $ans_i=ans_{i-2}$ 一定成立的情况，发现 $i\gt 19$。

因为此时有 $i-1\gt i-2\ge 18,$ 一定有 ans_{i-1} 或 ans_{i-2} 取到最大值(满秩)。

https://ac.nowcoder.com/acm/contest/5667/E
https://ac.nowcoder.com/acm/contest/5667/E
https://ac.nowcoder.com/acm/contest/5667/E

2026/01/14 02:21 27/28 多项式 2

CVBB ACM Team - https://wiki.cvbbacm.com/

假如 ans_{i-2} 取到最大值，则必有 $ans_i=ans_{i-2}$。

假如 ans_{i-1} 取到最大值，则 ans_i 和 ans_{i-2} 都为满秩异或一个数，所以可行最大值相同。

于是只需要计算出 $ans_i(1\le i\le 19)$ 即可。总时间复杂度 $O(n+\omega^22^\omega)$。

const int MAXN=2e5+5,MAXV=1<<18;
void XOR(int *f,int n,int type){
 int t1,t2;
 for(int i=1;i<n;i<<=1)
 for(int j=0;j<n;j+=(i<<1))
 _for(k,j,j+i){
 t1=f[k],t2=f[k+i];
 f[k]=(t1+t2);
 f[k+i]=(t1-t2);
 if(type==-1)
 f[k]/=2,f[k+i]/=2;
 }
}
int a[MAXV],b[MAXV],ans[MAXN];
int main()
{
 int n=read_int(),t;
 _for(i,0,n){
 t=read_int();
 a[t]=b[t]=1;
 ans[1]=max(ans[1],t);
 }
 XOR(a,MAXV,1);
 _rep(i,2,19){
 XOR(b,MAXV,1);
 _for(j,0,MAXV)b[j]*=a[j];
 XOR(b,MAXV,-1);
 _for(j,0,MAXV){
 if(b[j]){
 b[j]=1;
 ans[i]=j;
 }
 }
 }
 _rep(i,20,n)
 ans[i]=ans[i-2];
 _rep(i,1,n)
 space(ans[i]);
 return 0;
}

Last
update:
2020/08/07
16:15

2020-2021:teams:legal_string:jxm2001:
多项式_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:21

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

Last update: 2020/08/07 16:15

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_2&rev=1596788131

	多项式 2
	FFT
	算法简介
	算法实现
	快速傅里叶变换
	快速傅里叶逆变换
	递归版 FFT 板子

	算法优化
	蝴蝶变换
	非递归版 FFT 板子

	算法练习
	习题一
	题意
	题解
	优化
	应用

	习题二
	题意
	题解

	习题三
	题意
	题解

	习题四
	题意
	题解

	NTT
	算法简介
	理论基础
	阶
	定义
	性质

	原根
	定义
	性质

	算法实现
	算法练习
	题意
	题解

	MTT
	算法简介
	算法实现
	三模数NTT
	优化版拆系数FFT

	FWT
	算法简介
	算法实现
	或运算
	与运算
	异或运算

	算法练习
	题意
	题解

