
2026/02/02 13:19 1/12 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式 3

分治 FFT

算法简介

$O\left(n\log^2 n\right)$ 时间解决一些难以直接使用 FFT 解决的问题。

算法例题

洛谷p4721

题意

给定 $g_0,g_1\cdots g_{n-2}$。

已知 $f_0=1,f_{i+1}=\sum_{j=0}^{i} f_jg_{i-j}$，求 $f_0,f_1\cdots f_{n-1}$。

题解

发现转移过程可以用 CDQ 分治优化，区间 $[lef,mid]$ 对区间 $[mid,rig]$ 的贡献为

$$f_{i+1}\gets \sum_{j=lef}^{mid} f_jg_{i-j}$$

套用 NTT 可以 $O(n\log n)$ 求出 $\sum_{j=lef}^{mid} f_jg_{i-j},(mid\le i\lt rig)$，于是总时
间复杂度为 $O\left(n\log^2 n\right)$。

const int MAXN=1e5+5,Mod=998244353,G=3,Inv_G=332748118;
int quick_pow(int a,int b){
 int ans=1;
 while(b){
 if(b&1)
 ans=1LL*ans*a%Mod;
 a=1LL*a*a%Mod;
 b>>=1;
 }
 return ans;
}
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));

https://www.luogu.com.cn/problem/P4721
https://www.luogu.com.cn/problem/P4721

Last
update:
2020/08/12
16:27

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597220877

https://wiki.cvbbacm.com/ Printed on 2026/02/02 13:19

 return n;
}
void NTT(int *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 int t1,t2;
 for(int i=1;i<n;i<<=1){
 int w=quick_pow(type==1?G:Inv_G,(Mod-1)/(i<<1));
 for(int j=0;j<n;j+=(i<<1)){
 int cur=1;
 _for(k,j,j+i){
 t1=f[k],t2=1LL*cur*f[k+i]%Mod;
 f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
 cur=1LL*cur*w%Mod;
 }
 }
 }
 if(type==-1){
 int div=quick_pow(n,Mod-2);
 _for(i,0,n)
 f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
 }
}
int f[MAXN],g[MAXN],t1[MAXN<<2],t2[MAXN<<2];
void solve(int lef,int rig){
 if(lef==rig)return;
 int mid=lef+rig>>1;
 solve(lef,mid);
 int n1=mid-lef,n2=rig-lef-1,n=build(n1+n2);
 _rep(i,0,n1)t1[i]=f[i+lef];_for(i,n1+1,n)t1[i]=0;
 _rep(i,0,n2)t2[i]=g[i];_for(i,n2+1,n)t2[i]=0;
 NTT(t1,n,1);NTT(t2,n,1);
 _for(i,0,n)t1[i]=1LL*t1[i]*t2[i]%Mod;
 NTT(t1,n,-1);
 _for(i,mid,rig)f[i+1]=(f[i+1]+t1[i-lef])%Mod;
 solve(mid+1,rig);
}
int main()
{
 int n=read_int();
 _for(i,0,n-1)
 g[i]=read_int();
 f[0]=1;
 solve(0,n-1);
 _for(i,0,n)
 space(f[i]);
 return 0;
}

2026/02/02 13:19 3/12 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式求逆

洛谷p4238

算法简介

给定 $f(x)$，求 $f(x)f^{-1}(x)\equiv 1\pmod {x^n}$，时间复杂度 $O(n\log n)$。

算法实现

假设已知 $f(x)f_0^{-1}(x)\equiv 1\pmod {x^{\lceil \frac n2\rceil}}$。

由于 $f(x)f^{-1}(x)\equiv 1\pmod {x^n}$，显然有 $f(x)f^{-1}(x)\equiv 1\pmod {x^{\lceil \frac
n2\rceil}}$。

于是 $f^{-1}(x)-f_0^{-1}(x)\equiv 0\pmod {x^{\lceil \frac n2\rceil}}$。

两倍同时平方，有 $f^{-2}(x)-2f^{-1}(x)f_0^{-1}(x)+f_0^{-2}(x)\equiv 0\pmod {x^n}$。

两边同时乘以 $f(x)$，有 $f^{-1}(x)\equiv f_0^{-1}(x)(2-f(x)f_0^{-1}(x))\pmod {x^n}$。

现在考虑逆元存在条件，发现只要 $[x^0]f(x)$ 的逆元存在，就可以递推出 $f(x)$ 的逆元。

于是 $f^{-1}(x)$ 存在等价于 $\left([x^0]f(x)\right)^{-1}$ 存在。

时间复杂度有 $T(n)=T\left(\frac n2\right)+O(n\log n)$，于是 $T(n)=O(n\log n)$。

递归版与递推版效率相差不大。

//递归版
int temp[MAXN<<2];
void polyinv(int *f,int *g,int n){
 if(n==1)
 return g[0]=quick_pow(f[0],Mod-2),void();
 ployinv(f,g,(n+1)>>1);
 int m=build(n<<1);
 _for(i,0,n)temp[i]=f[i];_for(i,n,m)temp[i]=0;
 NTT(temp,m,1);NTT(g,m,1);
 _for(i,0,m)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
 NTT(g,m,-1);
 _for(i,n,m)g[i]=0;
}
//递推版
int temp[MAXN<<2];
void polyinv(int *f,int *g,int n){
 g[0]=quick_pow(f[0],Mod-2);
 int n1=2,n2=4,pos=2;
 while((n1>>1)<n){
 _for(i,0,n2)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));

https://www.luogu.com.cn/problem/P4238
https://www.luogu.com.cn/problem/P4238

Last
update:
2020/08/12
16:27

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597220877

https://wiki.cvbbacm.com/ Printed on 2026/02/02 13:19

 _for(i,0,n1)temp[i]=f[i];_for(i,n1,n2)temp[i]=0;
 NTT(temp,n2,1);NTT(g,n2,1);
 _for(i,0,n2)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
 NTT(g,n2,-1);
 _for(i,n1,n2)g[i]=0;
 n1<<=1,n2<<=1,pos++;
 }
 n1>>=1;
 _for(i,n,n1)g[i]=0;
}

多项式开根

洛谷p5277

算法简介

给定 $g(x)$，求 $f^2(x)\equiv g(x)\pmod {x^n}$，时间复杂度 $O(n\log n)$。

算法实现

假设已知 $f_0^2(x)\equiv g(x)\pmod {x^{\lceil \frac n2\rceil}}$。

两边平方，有 $\left(f_0^2(x)-g(x)\right)\equiv 0\pmod {x^n}$。

两边加上 $4f_0^2(x)g(x)$，有 $\left(f_0^2(x)+g(x)\right)^2 \equiv 4f_0^2(x)g(x)\pmod {x^n}$。

两边除以 $4f_0^2(x)$，有 $\left(\cfrac {f_0^2(x)+g(x)}{2f_0^2(x)}\right)^2 \equiv g(x)\pmod {x^n}$。

于是有 $f(x) \equiv \cfrac {f_0^2(x)+g(x)}{2f_0^2(x)} \equiv \cfrac {f_0(x)+f_0^{-1}(x)g(x)}2\pmod
{x^n}$。

现在考虑 $f(x)$ 存在条件，发现只要 $([x^0]f(x))^2 \equiv [x^0]g(x)\pmod p$ 有解即可。

考虑 BSGS 求出 $[x^0]g(x)$ 对应原根的幂次，即可得到 $[x^0]f(x)$。

HASH_Table<int,int> H;
int bsgs(int a,int b){
 H.clear();
 int m=sqrt(Mod)+1,t=b,base;
 for(int i=1;i<=m;i++){
 t=1LL*t*a%Mod;
 H.insert(t,i);
 }
 t=1,base=quick_pow(a,m);
 for(int i=1;i<=m;i++){
 t=1LL*t*base%Mod;

https://www.luogu.com.cn/problem/P5277
https://www.luogu.com.cn/problem/P5277

2026/02/02 13:19 5/12 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(H.find(t)!=-1)return m*i-H.find(t);
 }
 return -1;
}
int temp[MAXN<<2],inv_f[MAXN<<2];
void polysqrt(int *f,int *g,int n){
 f[0]=quick_pow(3,bsgs(3,g[0])/2);
 int n1=2,n2=4,pos=2,inv2=quick_pow(2,Mod-2);
 while((n1>>1)<n){
 _for(i,0,n2)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 _for(i,0,n2)inv_f[i]=0;
 ployinv(f,inv_f,n1);
 _for(i,0,n1)temp[i]=g[i];_for(i,n1,n2)temp[i]=0;
 NTT(inv_f,n2,1);NTT(temp,n2,1);
 _for(i,0,n2)temp[i]=1LL*temp[i]*inv_f[i]%Mod;
 NTT(temp,n2,-1);
 _for(i,0,n1)f[i]=1LL*(f[i]+temp[i])*inv2%Mod;
 n1<<=1,n2<<=1,pos++;
 }
 n1>>=1;
 _for(i,n,n1)f[i]=0;
}

多项式对数函数

洛谷p4725

算法简介

给定 $f(x)$，求模 x^n 意义下的 $\ln f(x)$，时间复杂度 $O(n\log n)$。

算法实现

$$\mathrm{d}(\ln f(x))\equiv \frac {f^{\prime}(x)}{f(x)}\mathrm{d}x\pmod {x^n}$$

$$\ln f(x)-\ln f(0)\equiv \int_0^x f^{\prime}(t)f^{-1}(t)\mathrm{d}t\pmod {x^n}$$

由于一般只考虑 $f(0)=1$ 的情况，同时易知 $\int f^{\prime}(x)f^{-1}(x)$ 常数项为 0，于是有

$$\ln f(x)\equiv \int f^{\prime}(x)f^{-1}(x)\mathrm{d}x\pmod {x^n}$$

int inv_f[MAXN<<2];
void polyln(int *f,int n){
 mem(inv_f,0);
 ployinv(f,inv_f,n);
 int m=build((n-1)<<1);
 _rep(i,1,n)f[i-1]=1LL*f[i]*i%Mod;_for(i,n,m)f[i]=0;

https://www.luogu.com.cn/problem/P4725
https://www.luogu.com.cn/problem/P4725

Last
update:
2020/08/12
16:27

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597220877

https://wiki.cvbbacm.com/ Printed on 2026/02/02 13:19

 NTT(f,m,1);NTT(inv_f,m,1);
 _for(i,0,m)f[i]=1LL*f[i]*inv_f[i]%Mod;
 NTT(f,m,-1);
 for(int i=n-1;i>=0;i--)f[i]=1LL*f[i-1]*quick_pow(i,Mod-2)%Mod;
 f[0]=0;
 _for(i,n,m)f[i]=0;
}

多项式牛顿迭代法

算法简介

给定多项式 $g(x)$，求 $f(x)$ 满足 $g(f(x))\equiv 0\pmod {x^n}$，时间复杂度 $O(n\log n)$。

算法实现

首先单独求出 $[x^0]g(f(x))\equiv 0\pmod x$。假设已知 $g(f_0(x))\equiv 0\pmod {x^{\lceil \frac
n2\rceil}}$。

将 $g(x)$ 在 $f_0(x)$ 处泰勒展开，有

$$\sum_{i=0}^{\infty} \cfrac {g^{(i)}(f_0(x))}{i!}(f(x)-f_0(x))^i\equiv 0\pmod {x^n}$$

同时有 $x^{\lceil \frac n2\rceil}\mid (f(x)-f_0(x))$，于是有 $(f(x)-f_0(x))^i\equiv 0\pmod {x^n}(i\ge
2)$。

$$\sum_{i=0}^{\infty} \cfrac {g^{(i)}(f_0(x))}{i!}(f(x)-f_0(x))^i\equiv
g(f_0(x))+g^{\prime}(f_0(x))(f(x)-f_0(x))\equiv 0\pmod {x^n}$$

$$f(x)\equiv f_0(x)-\frac {g(f_0(x))}{g^{\prime}(f_0(x))}\pmod {x^n}$$

准确来说这里把 $f_0(x)$ 当成了变元 y，$g^{\prime}(f_0(x))=\cfrac {\partial g}{\partial y}(y,x)$。

举个例子，$g(f_0(x))=g(y,x)=xy+x^2+x=\cfrac x{f_0(x)}+x^2+x$，$g^{\prime}(f_0(x))=\cfrac
{\partial g}{\partial y}(y,x)=-\cfrac x{y^2}=-\cfrac x{f_0^2(x)}$。

多项式指数函数

洛谷p4726

算法简介

给定 $f(x)$，求模 x^n 意义下的 $\exp f(x)$，时间复杂度 $O(n\log n)$。

https://www.luogu.com.cn/problem/P4726
https://www.luogu.com.cn/problem/P4726

2026/02/02 13:19 7/12 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

算法实现

考虑牛顿迭代法，设 $F(x)\equiv \exp f(x)\pmod {x^n}$，于是有 $g(F(x))\equiv \ln F(x)-f(x)\equiv
0\pmod {x^n}$。

$$F(x)\equiv F_0(x)-\frac {g(F_0(x))}{g^{\prime}(F_0(x))}\equiv F_0(x)-\frac {\ln F_0(x)-f(x)}{\frac
1{F_0(x)}}\equiv F_0(x)\left(1+f(x)-\ln F_0(x)\right)\pmod {x^n}$$

int ln_g[MAXN<<2];
void polyexp(int *f,int *g,int n){
 g[0]=1;
 int n1=2,n2=4,pos=2;
 while((n1>>1)<n){
 _for(i,0,n1>>1)ln_g[i]=g[i];_for(i,n1>>1,n2)ln_g[i]=0;
 ployln(ln_g,n1);
 ln_g[0]=(1+f[0]-ln_g[0])%Mod;
 _for(i,1,n1)ln_g[i]=(f[i]-ln_g[i])%Mod;
 _for(i,0,n2)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 NTT(g,n2,1);NTT(ln_g,n2,1);
 _for(i,0,n2)g[i]=1LL*g[i]*ln_g[i]%Mod;
 NTT(g,n2,-1);
 _for(i,n1,n2)g[i]=0;
 n1<<=1,n2<<=1,pos++;
 }
 n1>>=1;
 _for(i,n,n1)g[i]=0;
}

多项式快速幂

洛谷p5273

算法简介

给定 $f(x)$，求模 x^n 意义下的 $f^k(x)$，时间复杂度 $O(n\log n)$。

算法实现

考虑取对数将幂次运算转化为乘法运算加速算法。而多项式取对数存在 $[x^0]f(x)=1$ 的限制，大多数情
况下无法直接套用。

于是考虑选取 $f(x)$ 第一个非零的项，即为 a_tx^t，然后提取出 a_tx^t，得到下式

$$f^k(x)\equiv a_t^kx^{tk}\exp\left(k\ln \frac{f(x)}{a_tx^t}\right)\pmod {x^n}$$

注意到如果 k 为高精度数，需要同时记录 $k\bmod {p-1}$ 和 $k\bmod p$ 的结果。

https://www.luogu.com.cn/problem/P5273
https://www.luogu.com.cn/problem/P5273

Last
update:
2020/08/12
16:27

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597220877

https://wiki.cvbbacm.com/ Printed on 2026/02/02 13:19

其中计算 a_t^k 需要 $k\bmod {p-1}$，计算 $k\ln \cfrac{f(x)}{a_tx^t}$ 需要 $k\bmod p$，同时考虑
提前处理 x^{tk} 次数大于 x^n 的情况。

int ln_f[MAXN<<2];
void polypow(int *f,int n,int k1,int k2){
 LL pos=0,posv;
 while(!f[pos]&&pos<n)pos++;
 if(pos==n)return;
 posv=quick_pow(f[pos],Mod-2);
 _for(i,pos,n)ln_f[i-pos]=f[i]*posv%Mod,f[i]=0;
 _for(i,n-pos,n)ln_f[i]=0;
 ployln(ln_f,n);
 _for(i,0,n)ln_f[i]=1LL*ln_f[i]*k1%Mod;
 ployexp(ln_f,f,n);
 pos=pos*k2;posv=quick_pow(posv,1LL*k2*(Mod-2)%(Mod-1));
 for(int i=n-1;i>=pos;i--)f[i]=f[i-pos]*posv%Mod;
 pos=min(pos,1LL*n);
 _for(i,0,pos)f[i]=0;
}

多项式除法

洛谷p4512

算法简介

给定 $f(x),g(x)$，不妨记 $\text{deg}(f)=n,\text{deg}(g)=m,n\gt m$。$O(n\log n)$ 时间内求 $q(x),r(x)$
满足 $$f(x)=q(x)g(x)+r(x)\left(\text{deg}(q)=n-m,\text{deg}(r)\lt m\right)$$

算法实现

构造函数 $f^{R}(x)=x^{\text{deg}(f)}f(\frac 1x)$，易知 $f^{R}(x)$ 与 $f(x)$ 系数恰好颠倒，可以
$O(n)$ 相互转化。

根据已知，有

$$f(\frac 1x)=q(\frac 1x)g(\frac 1x)+r(\frac 1x)$$

将上式两边同时乘以 x^n，有

$$f^{R}(x)=q^{R}(x)g^{R}(x)+x^{n-{\text{deg}(r)}}r^{R}(x)$$

由于 $n-{\text{deg}(r)}\ge n-m+1$，于是有

$$f^{R}(x)\equiv q^{R}(x)g^{R}(x)\pmod {x^{n-m+1}}$$

于是可以利用多项式求逆求出 $q^{R}(x)$，然后据此求出 $q(x),r(x)$。

https://www.luogu.com.cn/problem/P4512
https://www.luogu.com.cn/problem/P4512

2026/02/02 13:19 9/12 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

int temp1[MAXN<<2],temp2[MAXN<<2];
void polydiv(int *f,int *g,int *q,int *r,int n,int m){
 _for(i,0,n)temp1[i]=f[n-1-i];
 _for(i,0,m)temp2[i]=g[m-1-i];
 ployinv(temp2,q,n-m+1);
 int N=build(2*n-m-1);
 NTT(q,N,1);NTT(temp1,N,1);
 _for(i,0,N)q[i]=1LL*q[i]*temp1[i]%Mod;
 NTT(q,N,-1);
 _for(i,0,N)temp1[i]=temp2[i]=0;
 for(int i=0,j=n-m;i<j;i++,j--)swap(q[i],q[j]);
 _for(i,n-m+1,N)q[i]=0;
 _for(i,0,n-m+1)temp1[i]=q[i];
 _for(i,0,m)temp2[i]=g[i];
 N=build(n-1);
 NTT(temp1,N,1);NTT(temp2,N,1);
 _for(i,0,N)temp1[i]=1LL*temp1[i]*temp2[i]%Mod;
 NTT(temp1,N,-1);
 _for(i,0,m-1)r[i]=(f[i]+Mod-temp1[i])%Mod;
 _for(i,0,N)temp1[i]=temp2[i]=0;
}

多项式板子汇总

namespace Poly{
 const int G=3;
 int rev[MAXN<<2],Wn[30][2];
 void init(){
 int m=Mod-1,lg2=0;
 while(m%2==0)m>>=1,lg2++;
 Wn[lg2][1]=quick_pow(G,m);
 Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
 while(lg2){
 m<<=1,lg2--;
 Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
 Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
 }
 }
 int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
 }
 void NTT(int *f,int n,bool type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 int t1,t2;

Last
update:
2020/08/12
16:27

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597220877

https://wiki.cvbbacm.com/ Printed on 2026/02/02 13:19

 for(int i=1,lg2=0;i<n;i<<=1,lg2++){
 int w=Wn[lg2+1][type];
 for(int j=0;j<n;j+=(i<<1)){
 int cur=1;
 _for(k,j,j+i){
 t1=f[k],t2=1LL*cur*f[k+i]%Mod;
 f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
 cur=1LL*cur*w%Mod;
 }
 }
 }
 if(!type){
 int div=quick_pow(n,Mod-2);
 _for(i,0,n)f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
 }
 }
 void Mul(int *f,int _n,int *g,int _m,int xmod=0){
 int n=build(_n+_m-2);
 _for(i,_n,n)f[i]=0;_for(i,_m,n)g[i]=0;
 NTT(f,n,true);NTT(g,n,true);
 _for(i,0,n)f[i]=1LL*f[i]*g[i]%Mod;
 NTT(f,n,false);
 if(xmod)_for(i,xmod,n)f[i]=0;
 }
 void Inv(const int *f,int *g,int _n){
 static int temp[MAXN<<2];
 if(_n==1)return g[0]=quick_pow(f[0],Mod-2),void();
 Inv(f,g,(_n+1)>>1);
 int n=build((_n-1)<<1);
 _for(i,(_n+1)>>1,n)g[i]=0;
 _for(i,0,_n)temp[i]=f[i];_for(i,_n,n)temp[i]=0;
 NTT(g,n,true);NTT(temp,n,true);
 _for(i,0,n)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
 NTT(g,n,false);
 _for(i,_n,n)g[i]=0;
 }
 void Div(const int *f,int _n,const int *g,int _m,int *q,int *r){
 static int temp[MAXN<<2];
 _for(i,0,_m)temp[i]=g[_m-1-i];
 Inv(temp,q,_n-_m+1);
 _for(i,0,_n)temp[i]=f[_n-1-i];
 Mul(q,_n-_m+1,temp,_n,_n-_m+1);
 for(int i=0,j=_n-_m;i<j;i++,j--)swap(q[i],q[j]);
 _for(i,0,_m)r[i]=g[i];_rep(i,0,_n-_m)temp[i]=q[i];
 Mul(r,_m,temp,_n-_m+1,_m);
 _for(i,0,_m)r[i]=(f[i]+Mod-r[i])%Mod;
 }
 void Ln(const int *f,int *g,int _n){
 static int temp[MAXN<<2];
 Inv(f,g,_n);

2026/02/02 13:19 11/12 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

 _for(i,1,_n)temp[i-1]=1LL*f[i]*i%Mod;
 temp[_n-1]=0;
 Mul(g,_n,temp,_n-1,_n);
 for(int i=_n-1;i;i--)g[i]=1LL*g[i-1]*quick_pow(i,Mod-2)%Mod;
 g[0]=0;
 }
 void Exp(const int *f,int *g,int _n){
 static int temp[MAXN<<2];
 if(_n==1)return g[0]=1,void();
 Exp(f,g,(_n+1)>>1);
 _for(i,(_n+1)>>1,_n)g[i]=0;
 Ln(g,temp,_n);
 temp[0]=(1+f[0]-temp[0])%Mod;
 _for(i,1,_n)temp[i]=(f[i]-temp[i])%Mod;
 Mul(g,(_n+1)>>1,temp,_n,_n);
 }
 void Pow(const int *f,int *g,int _n,int k1,int k2){
 static int temp[MAXN<<2];
 int pos=0,posv;
 while(!f[pos]&&pos<_n)pos++;
 if(1LL*pos*k2>=_n){
 _for(i,0,_n)g[i]=0;
 return;
 }
 posv=quick_pow(f[pos],Mod-2);
 _for(i,pos,_n)g[i-pos]=1LL*f[i]*posv%Mod;
 _for(i,_n-pos,_n)g[i]=0;
 Ln(g,temp,_n);
 _for(i,0,_n)temp[i]=1LL*temp[i]*k1%Mod;
 Exp(temp,g,_n);
 pos=pos*k2,posv=quick_pow(posv,1LL*k2*(Mod-2)%(Mod-1));
 for(int i=_n-1;i>=pos;i--)g[i]=1LL*g[i-pos]*posv%Mod;
 _for(i,0,pos)g[i]=0;
 }
 void Sqrt(const int *f,int *g,int _n){
 static int temp1[MAXN<<2],temp2[MAXN<<2];
 if(_n==1)return g[0]=quick_pow(G,bsgs(3,f[0])/2),void();
 Sqrt(f,g,(_n+1)>>1);
 _for(i,(_n+1)>>1,_n)g[i]=0;
 _for(i,0,_n)temp1[i]=f[i];
 Inv(g,temp2,_n);
 Mul(temp1,_n,temp2,_n);
 int div2=quick_pow(2,Mod-2);
 _for(i,0,_n)g[i]=1LL*(g[i]+temp1[i])*div2%Mod;
 }
}

Last
update:
2020/08/12
16:27

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597220877

https://wiki.cvbbacm.com/ Printed on 2026/02/02 13:19

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597220877

Last update: 2020/08/12 16:27

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597220877

	多项式 3
	分治 FFT
	算法简介
	算法例题
	题意
	题解

	多项式求逆
	算法简介
	算法实现

	多项式开根
	算法简介
	算法实现

	多项式对数函数
	算法简介
	算法实现

	多项式牛顿迭代法
	算法简介
	算法实现

	多项式指数函数
	算法简介
	算法实现

	多项式快速幂
	算法简介
	算法实现

	多项式除法
	算法简介
	算法实现

	多项式板子汇总

