
2026/02/02 14:57 1/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式 3

倍增 FFT

算法简介

主要用于加速可以倍增转移的动态规划，时间复杂度 $O\left(n\log^2 n\right)$。

算法例题

CF755G

题意

将 $n$ 个球排成一排。规定一个组至少包含一个球，至多包含两个相邻的球，且一个球至多属于一个组。

问从这 $n$ 个球中取 $k$ 组有多少方案，答案对 $998244353$ 取模。

题解

设 $\text{dp}(i,j)$ 表示从 $i$ 个球里选 $j$ 组的方案数。

对于第 $n$ 个球，要么不选，要么单独构成一个组，要么与第 $n-1$ 个球构成一个组，于是有状态转移
方程

$$\text{dp}(i,j)=\text{dp}(i-1,j)+\text{dp}(i-1,j-1)+\text{dp}(i-1,j-2)$$

同时将 $a+b$ 个球划分为两组 $1\sim a$ 和 $a+1\sim a+b$，根据 $a,a+1$ 是否共同为一组可得状态转
移方程

$$\text{dp}(a+b,k)=\sum_{i=0}^k\text{dp}(a,i)\text{dp}(b,k-
i)+\sum_{i=0}^{k-1}\text{dp}(a-1,i)\text{dp}(b-1,k-i-1)$$

设 $F_n(x)=\sum_{i=0}^{\infty} \text{dp}(n,i)x^i$，于是有

$$F_n(x)=F_{n-1}(x)+xF_{n-1}(x)+x^2F_{n-2}(x)$$

$$F_{a+b}(x)=F_a(x)F_b(x)+xF_{a-1}(x)F_{b-1}(x)$$

$$F_{2n-2}(x)=F_{n-1}^2(x)+xF_{n-2}^2(x)$$

$$F_{2n-1}(x)=F_n(x)F_{n-1}(x)+xF_{n-1}(x)F_{n-2}(x)$$

$$F_{2n}(x)=F_n^2(x)+xF_{n-1}^2(x)$$

于是可以 $\left(F_{n-2},F_{n-1},F_n\right)\to

https://www.luogu.com.cn/problem/CF755G


Last
update:
2020/08/20
17:00

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

https://wiki.cvbbacm.com/ Printed on 2026/02/02 14:57

\left(F_{n-1},F_n,F_{n+1}\right),\left(F_{2n-2},F_{2n-1},F_{2n}\right)$

于是用类似快速幂的算法可以 $O(k\log n\log k)$ 解决上述问题。

const int MAXN=1<<16,Mod=998244353,G=3;
int quick_pow(int a,int b){
    int ans=1;
    while(b){
        if(b&1)
        ans=1LL*ans*a%Mod;
        a=1LL*a*a%Mod;
        b>>=1;
    }
    return ans;
}
int rev[MAXN],Wn[30][2];
void init(){
    int m=Mod-1,lg2=0;
    while(m%2==0)m>>=1,lg2++;
    Wn[lg2][1]=quick_pow(G,m);
    Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
    while(lg2){
        m<<=1,lg2--;
        Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
        Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
    }
}
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void NTT(int *f,int n,bool type){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    int t1,t2;
    for(int i=1,lg2=0;i<n;i<<=1,lg2++){
        int w=Wn[lg2+1][type];
        for(int j=0;j<n;j+=(i<<1)){
            int cur=1;
            _for(k,j,j+i){
                t1=f[k],t2=1LL*cur*f[k+i]%Mod;
                f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
                cur=1LL*cur*w%Mod;
            }
        }
    }



2026/02/02 14:57 3/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

    if(!type){
        int div=quick_pow(n,Mod-2);
        _for(i,0,n)f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
    }
}
int f[3][MAXN],temp[5][MAXN];
void Add(int n){
    _rep(i,0,n)
    f[0][i]=f[1][i],f[1][i]=f[2][i];
    f[2][0]=1;
    _rep(i,1,n)
    f[2][i]=((f[1][i]+f[1][i-1])%Mod+f[0][i-1])%Mod;
}
void Mul(int n){
    int _n=build(n<<1);
    _for(i,0,3)NTT(f[i],_n,true);
    _for(i,0,_n){
temp[0][i]=1LL*f[1][i]*f[1][i]%Mod,temp[1][i]=1LL*f[0][i]*f[0][i]%Mod;
temp[2][i]=1LL*f[2][i]*f[1][i]%Mod,temp[3][i]=1LL*f[1][i]*f[0][i]%Mod;
        temp[4][i]=1LL*f[2][i]*f[2][i]%Mod;
    }
    _for(i,0,5)NTT(temp[i],_n,false);
    f[0][0]=temp[0][0],f[1][0]=temp[2][0],f[2][0]=temp[4][0];
    _rep(i,1,n){
        f[0][i]=(temp[0][i]+temp[1][i-1])%Mod;
        f[1][i]=(temp[2][i]+temp[3][i-1])%Mod;
        f[2][i]=(temp[4][i]+temp[0][i-1])%Mod;
    }
    _for(i,n+1,_n)f[0][i]=f[1][i]=f[2][i]=0;
}
int main()
{
    init();
    int n=read_int(),k=read_int(),pos=30;
    while(n<(1<<pos))pos--;
    f[1][0]=f[2][0]=f[2][1]=1;
    while(pos--){
        Mul(k);
        if(n&(1<<pos))Add(k);
    }
    _rep(i,1,k)space(f[2][i]);
    return 0;
}

分治 FFT

算法简介

$O\left(n\log^2 n\right)$ 时间解决一些难以直接使用 $\text{FFT}$ 解决的问题。



Last
update:
2020/08/20
17:00

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

https://wiki.cvbbacm.com/ Printed on 2026/02/02 14:57

算法例题

洛谷p4721

题意

给定 $g_0,g_1\cdots g_{n-2}$。

已知 $f_0=1,f_{i+1}=\sum_{j=0}^{i} f_jg_{i-j}$，求 $f_0,f_1\cdots f_{n-1}$。

题解

发现转移过程可以用 $\text{CDQ}$ 分治优化，区间 $[lef,mid]$ 对区间 $[mid,rig]$ 的贡献为

$$f_{i+1}\gets \sum_{j=lef}^{mid} f_jg_{i-j}$$

套用 $\text{NTT}$ 可以 $O(n\log n)$ 求出 $\sum_{j=lef}^{mid} f_jg_{i-j},(mid\le i\lt rig)$，于是总时
间复杂度为 $O\left(n\log^2 n\right)$。

const int MAXN=1e5+5,Mod=998244353,G=3,Inv_G=332748118;
int quick_pow(int a,int b){
    int ans=1;
    while(b){
        if(b&1)
        ans=1LL*ans*a%Mod;
        a=1LL*a*a%Mod;
        b>>=1;
    }
    return ans;
}
int rev[MAXN<<2];
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;
    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void NTT(int *f,int n,int type){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    int t1,t2;
    for(int i=1;i<n;i<<=1){
        int w=quick_pow(type==1?G:Inv_G,(Mod-1)/(i<<1));
        for(int j=0;j<n;j+=(i<<1)){
            int cur=1;

https://www.luogu.com.cn/problem/P4721
https://www.luogu.com.cn/problem/P4721


2026/02/02 14:57 5/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

            _for(k,j,j+i){
                t1=f[k],t2=1LL*cur*f[k+i]%Mod;
                f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
                cur=1LL*cur*w%Mod;
            }
        }
    }
    if(type==-1){
        int div=quick_pow(n,Mod-2);
        _for(i,0,n)
        f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
    }
}
int f[MAXN],g[MAXN],t1[MAXN<<2],t2[MAXN<<2];
void solve(int lef,int rig){
    if(lef==rig)return;
    int mid=lef+rig>>1;
    solve(lef,mid);
    int n1=mid-lef,n2=rig-lef-1,n=build(n1+n2);
    _rep(i,0,n1)t1[i]=f[i+lef];_for(i,n1+1,n)t1[i]=0;
    _rep(i,0,n2)t2[i]=g[i];_for(i,n2+1,n)t2[i]=0;
    NTT(t1,n,1);NTT(t2,n,1);
    _for(i,0,n)t1[i]=1LL*t1[i]*t2[i]%Mod;
    NTT(t1,n,-1);
    _for(i,mid,rig)f[i+1]=(f[i+1]+t1[i-lef])%Mod;
    solve(mid+1,rig);
}
int main()
{
    int n=read_int();
    _for(i,0,n-1)
    g[i]=read_int();
    f[0]=1;
    solve(0,n-1);
    _for(i,0,n)
    space(f[i]);
    return 0;
}

算法练习

CF553E

题意

给定一张 $n$ 个点 $m$ 条边的无重边无自环的有向图，你要从 $1$ 号点到 $n$ 号点去1.
如果你在 $t$ 时刻之后才到达 $n$ 号点，你要交 $x$ 元的罚款2.
经过每条边需要支付 $w_e$ 费用，且经过该边消耗 $k$ 个单位时间的概率为 $p_{e,k}(1\le k\le t)$3.

https://www.luogu.com.cn/problem/CF553E


Last
update:
2020/08/20
17:00

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

https://wiki.cvbbacm.com/ Printed on 2026/02/02 14:57

求最优策略下到达点 $n$ 需要花费的最小费用的期望值，数据范围 $n\le 50,m\le 100,t\le 2\times 10^4$。

题解

设 $\text{dp}(i,j)$ 表示走到点 $i$ 且已经花费 $j$ 个单位时间，达到点 $n$ 还需要花费的最小费用的期
望值。

$$\text{dp}(u_e,j)=\min \left(w_e+\sum_{k=1}^tp_{e,k}\text{dp}(v_e,j+k)\right)$$

边界条件为 $\text{dp}(u_e,j)=x+\text{dis}(u,n)(j\gt t),\text{dp}(n,j)=0(j\le t)$。

设 $g(e,j)=\sum_{k=1}^tp_{e,k}\text{dp}(v_e,j+k)$，于是有 $\text{dp}(u_e,j)=\min (w_e+g(e,j))$。

考虑分治 $\text{FFT}$，先计算出 $\text{dp}(u_e,\text{mid}+1\sim \text{rig})$，在计算他们对
$g(e,\text{lef}\sim \text{mid})$ 的贡献，再计算出 $\text{dp}(u_e,\text{lef}\sim \text{mid})$。

其中，$j\in [\text{lef},\text{mid}]$，而 $j+k$ 需要不遗漏地覆盖 $[\text{mid}+1,\text{rig}]$，于是
$k\in [1,\text{rig}-\text{lef}]$。

记 $a_i=p_{e,\text{rig}-\text{lef}-i},b_i=\text{dp}(v_e,i+\text{mid}+1)$，于是

$$g(e,j)\gets \sum p_{e,k}\text{dp}(v_e,j+k)=\sum a_{\text{rig}-\text{lef}-k}b_{k+j-
\text{mid}-1}$$

递归边界为 $\text{lef}=\text{rig}$，此时用 $g(e,j)$ 更新 $\text{dp}(u_e,j)$。

由于没有必要通过分治计算出 $\text{dp}(e_u,t+1\sim 2t)$，故可以分治前处理。

总时间复杂度 $O(mt\log^2 t)$。

const int MAXN=55,MAXM=105,MAXT=2e4+5;
const double pi=acos(-1.0),Inf=1e9;
struct complex{
    double x,y;
    complex(double x=0.0,double y=0.0):x(x),y(y){}
    complex operator + (const complex &b){
        return complex(x+b.x,y+b.y);
    }
    complex operator - (const complex &b){
        return complex(x-b.x,y-b.y);
    }
    complex operator * (const complex &b){
        return complex(x*b.x-y*b.y,x*b.y+y*b.x);
    }
};
int rev[MAXT<<2];
int build(int k){
    int n,pos=0;
    while((1<<pos)<=k)pos++;
    n=1<<pos;



2026/02/02 14:57 7/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

    _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
    return n;
}
void FFT(complex *f,int n,int type){
    _for(i,0,n)if(i<rev[i])
    swap(f[i],f[rev[i]]);
    complex t1,t2;
    for(int i=1;i<n;i<<=1){
        complex w(cos(pi/i),type*sin(pi/i));
        for(int j=0;j<n;j+=(i<<1)){
            complex cur(1.0,0.0);
            _for(k,j,j+i){
                t1=f[k],t2=cur*f[k+i];
                f[k]=t1+t2,f[k+i]=t1-t2;
                cur=cur*w;
            }
        }
    }
    if(type==-1)_for(i,0,n)
    f[i].x/=n;
}
complex t1[MAXT<<3],t2[MAXT<<3];
struct Edge{
    int u,v;
    double w;
}edge[MAXM];
int edge_cnt;
double
dp[MAXN][MAXT<<1],dp2[MAXM][MAXT<<1],dis[MAXN][MAXN],p[MAXM][MAXT<<1];
void cal(int lef,int rig){
    int mid=lef+rig>>1;
    _for(k,0,edge_cnt){
        int n1=rig-lef,n2=rig-mid,n=build(n1+n2-2);
        _for(i,0,n1)t1[i].x=p[k][n1-
i],t1[i].y=0.0;_for(i,n1,n)t1[i].x=t1[i].y=0.0;
_for(i,0,n2)t2[i].x=dp[edge[k].v][i+mid+1],t2[i].y=0.0;_for(i,n2,n)t2[i].x=
t2[i].y=0.0;
        FFT(t1,n,1);FFT(t2,n,1);
        _for(i,0,n)t1[i]=t1[i]*t2[i];
        FFT(t1,n,-1);
        _rep(i,lef,mid)dp2[k][i]+=t1[i+rig-lef-mid-1].x;
    }
}
void cdq(int lef,int rig){
    int mid=lef+rig>>1;
    if(lef==rig){
        _for(i,0,edge_cnt)
        dp[edge[i].u][mid]=min(dp[edge[i].u][mid],dp2[i][mid]+edge[i].w);
        return;
    }
    cdq(mid+1,rig);



Last
update:
2020/08/20
17:00

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

https://wiki.cvbbacm.com/ Printed on 2026/02/02 14:57

    cal(lef,rig);
    cdq(lef,mid);
}
int main()
{
    int n=read_int(),m=edge_cnt=read_int(),t=read_int();
    double x=read_int();
    _rep(i,1,n)_rep(j,1,n)dis[i][j]=Inf;
    _rep(i,1,n)dis[i][i]=0.0;
    _for(i,0,m){
        edge[i].u=read_int(),edge[i].v=read_int(),edge[i].w=read_int();
        _rep(j,1,t)p[i][j]=read_int()/1e5;
        dis[edge[i].u][edge[i].v]=edge[i].w;
    }
    _rep(k,1,n)_rep(i,1,n)_rep(j,1,n)
    dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
    _rep(i,0,t)dp[n][i]=0;_rep(i,t+1,t<<1)dp[n][i]=x;
    _for(i,1,n){
        _rep(j,0,t)dp[i][j]=Inf;
        _rep(j,t+1,t<<1)dp[i][j]=x+dis[i][n];
    }
    cal(0,t<<1);
    cdq(0,t);
    printf("%.10lf",dp[1][0]);
    return 0;
}

多项式求逆

洛谷p4238

算法简介

给定 $f(x)$，求 $f(x)f^{-1}(x)\equiv 1\pmod {x^n}$，时间复杂度 $O(n\log n)$。

算法实现

假设已知 $f(x)f_0^{-1}(x)\equiv 1\pmod {x^{\lceil \frac n2\rceil}}$。

由于 $f(x)f^{-1}(x)\equiv 1\pmod {x^n}$，显然有 $f(x)f^{-1}(x)\equiv 1\pmod {x^{\lceil \frac
n2\rceil}}$。

于是 $f^{-1}(x)-f_0^{-1}(x)\equiv 0\pmod {x^{\lceil \frac n2\rceil}}$。

两倍同时平方，有 $f^{-2}(x)-2f^{-1}(x)f_0^{-1}(x)+f_0^{-2}(x)\equiv 0\pmod {x^n}$。

https://www.luogu.com.cn/problem/P4238
https://www.luogu.com.cn/problem/P4238


2026/02/02 14:57 9/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

两边同时乘以 $f(x)$，有 $f^{-1}(x)\equiv f_0^{-1}(x)(2-f(x)f_0^{-1}(x))\pmod {x^n}$。

现在考虑逆元存在条件，发现只要 $[x^0]f(x)$ 的逆元存在，就可以递推出 $f(x)$ 的逆元。

于是 $f^{-1}(x)$ 存在等价于 $\left([x^0]f(x)\right)^{-1}$ 存在。

时间复杂度有 $T(n)=T\left(\frac n2\right)+O(n\log n)$，于是 $T(n)=O(n\log n)$。

递归版与递推版效率相差不大。

//递归版
int temp[MAXN<<2];
void polyinv(int *f,int *g,int n){
    if(n==1)
    return g[0]=quick_pow(f[0],Mod-2),void();
    ployinv(f,g,(n+1)>>1);
    int m=build(n<<1);
    _for(i,0,n)temp[i]=f[i];_for(i,n,m)temp[i]=0;
    NTT(temp,m,1);NTT(g,m,1);
    _for(i,0,m)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
    NTT(g,m,-1);
    _for(i,n,m)g[i]=0;
}
//递推版
int temp[MAXN<<2];
void polyinv(int *f,int *g,int n){
    g[0]=quick_pow(f[0],Mod-2);
    int n1=2,n2=4,pos=2;
    while((n1>>1)<n){
        _for(i,0,n2)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
        _for(i,0,n1)temp[i]=f[i];_for(i,n1,n2)temp[i]=0;
        NTT(temp,n2,1);NTT(g,n2,1);
        _for(i,0,n2)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
        NTT(g,n2,-1);
        _for(i,n1,n2)g[i]=0;
        n1<<=1,n2<<=1,pos++;
    }
    n1>>=1;
    _for(i,n,n1)g[i]=0;
}

多项式开根

洛谷p5277

算法简介

给定 $g(x)$，求 $f^2(x)\equiv g(x)\pmod {x^n}$，时间复杂度 $O(n\log n)$。

https://www.luogu.com.cn/problem/P5277
https://www.luogu.com.cn/problem/P5277


Last
update:
2020/08/20
17:00

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

https://wiki.cvbbacm.com/ Printed on 2026/02/02 14:57

算法实现

假设已知 $f_0^2(x)\equiv g(x)\pmod {x^{\lceil \frac n2\rceil}}$。

两边平方，有 $\left(f_0^2(x)-g(x)\right)\equiv 0\pmod {x^n}$。

两边加上 $4f_0^2(x)g(x)$，有 $\left(f_0^2(x)+g(x)\right)^2 \equiv 4f_0^2(x)g(x)\pmod {x^n}$。

两边除以 $4f_0^2(x)$，有 $\left(\cfrac {f_0^2(x)+g(x)}{2f_0^2(x)}\right)^2 \equiv g(x)\pmod {x^n}$。

于是有 $f(x) \equiv \cfrac {f_0^2(x)+g(x)}{2f_0^2(x)} \equiv \cfrac {f_0(x)+f_0^{-1}(x)g(x)}2\pmod
{x^n}$。

现在考虑 $f(x)$ 存在条件，发现只要 $([x^0]f(x))^2 \equiv [x^0]g(x)\pmod p$ 有解即可。

考虑 $\text{BSGS}$ 求出 $[x^0]g(x)$ 对应原根的幂次，即可得到 $[x^0]f(x)$。

HASH_Table<int,int> H;
int bsgs(int a,int b){
    H.clear();
    int m=sqrt(Mod)+1,t=b,base;
    for(int i=1;i<=m;i++){
        t=1LL*t*a%Mod;
        H.insert(t,i);
    }
    t=1,base=quick_pow(a,m);
    for(int i=1;i<=m;i++){
        t=1LL*t*base%Mod;
        if(H.find(t)!=-1)return m*i-H.find(t);
    }
    return -1;
}
int temp[MAXN<<2],inv_f[MAXN<<2];
void polysqrt(int *f,int *g,int n){
    f[0]=quick_pow(3,bsgs(3,g[0])/2);
    int n1=2,n2=4,pos=2,inv2=quick_pow(2,Mod-2);
    while((n1>>1)<n){
        _for(i,0,n2)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
        _for(i,0,n2)inv_f[i]=0;
        ployinv(f,inv_f,n1);
        _for(i,0,n1)temp[i]=g[i];_for(i,n1,n2)temp[i]=0;
        NTT(inv_f,n2,1);NTT(temp,n2,1);
        _for(i,0,n2)temp[i]=1LL*temp[i]*inv_f[i]%Mod;
        NTT(temp,n2,-1);
        _for(i,0,n1)f[i]=1LL*(f[i]+temp[i])*inv2%Mod;
        n1<<=1,n2<<=1,pos++;
    }
    n1>>=1;
    _for(i,n,n1)f[i]=0;
}



2026/02/02 14:57 11/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式对数函数

洛谷p4725

算法简介

给定 $f(x)$，求模 $x^n$ 意义下的 $\ln f(x)$，时间复杂度 $O(n\log n)$。

算法实现

$$\mathrm{d}(\ln f(x))\equiv \frac {f^{\prime}(x)}{f(x)}\mathrm{d}x\pmod {x^n}$$

$$\ln f(x)-\ln f(0)\equiv \int_0^x f^{\prime}(t)f^{-1}(t)\mathrm{d}t\pmod {x^n}$$

由于一般只考虑 $f(0)=1$ 的情况，同时易知 $\int f^{\prime}(x)f^{-1}(x)$ 常数项为 $0$，于是有

$$\ln f(x)\equiv \int f^{\prime}(x)f^{-1}(x)\mathrm{d}x\pmod {x^n}$$

int inv_f[MAXN<<2];
void polyln(int *f,int n){
    mem(inv_f,0);
    ployinv(f,inv_f,n);
    int m=build((n-1)<<1);
    _rep(i,1,n)f[i-1]=1LL*f[i]*i%Mod;_for(i,n,m)f[i]=0;
    NTT(f,m,1);NTT(inv_f,m,1);
    _for(i,0,m)f[i]=1LL*f[i]*inv_f[i]%Mod;
    NTT(f,m,-1);
    for(int i=n-1;i>=0;i--)f[i]=1LL*f[i-1]*quick_pow(i,Mod-2)%Mod;
    f[0]=0;
    _for(i,n,m)f[i]=0;
}

多项式牛顿迭代法

算法简介

给定多项式 $g(x)$，求 $f(x)$ 满足 $g(f(x))\equiv 0\pmod {x^n}$，时间复杂度 $O(n\log n)$。

算法实现

首先单独求出 $[x^0]g(f(x))\equiv 0\pmod x$。假设已知 $g(f_0(x))\equiv 0\pmod {x^{\lceil \frac
n2\rceil}}$。

将 $g(x)$ 在 $f_0(x)$ 处泰勒展开，有

https://www.luogu.com.cn/problem/P4725
https://www.luogu.com.cn/problem/P4725


Last
update:
2020/08/20
17:00

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

https://wiki.cvbbacm.com/ Printed on 2026/02/02 14:57

$$\sum_{i=0}^{\infty} \cfrac {g^{(i)}(f_0(x))}{i!}(f(x)-f_0(x))^i\equiv 0\pmod {x^n}$$

同时有 $x^{\lceil \frac n2\rceil}\mid (f(x)-f_0(x))$，于是有 $(f(x)-f_0(x))^i\equiv 0\pmod {x^n}(i\ge
2)$。

$$\sum_{i=0}^{\infty} \cfrac {g^{(i)}(f_0(x))}{i!}(f(x)-f_0(x))^i\equiv
g(f_0(x))+g^{\prime}(f_0(x))(f(x)-f_0(x))\equiv 0\pmod {x^n}$$

$$f(x)\equiv f_0(x)-\frac {g(f_0(x))}{g^{\prime}(f_0(x))}\pmod {x^n}$$

准确来说这里把 $f_0(x)$ 当成了变元 $y$，$g^{\prime}(f_0(x))=\cfrac {\partial g}{\partial y}(y,x)$。

举个例子，$g(f_0(x))=g(y,x)=xy+x^2+x=\cfrac x{f_0(x)}+x^2+x$，$g^{\prime}(f_0(x))=\cfrac
{\partial g}{\partial y}(y,x)=-\cfrac x{y^2}=-\cfrac x{f_0^2(x)}$。

多项式指数函数

洛谷p4726

算法简介

给定 $f(x)$，求模 $x^n$ 意义下的 $\exp f(x)$，时间复杂度 $O(n\log n)$。

算法实现

考虑牛顿迭代法，设 $F(x)\equiv \exp f(x)\pmod {x^n}$，于是有 $g(F(x))\equiv \ln F(x)-f(x)\equiv
0\pmod {x^n}$。

$$F(x)\equiv F_0(x)-\frac {g(F_0(x))}{g^{\prime}(F_0(x))}\equiv F_0(x)-\frac {\ln F_0(x)-f(x)}{\frac
1{F_0(x)}}\equiv F_0(x)\left(1+f(x)-\ln F_0(x)\right)\pmod {x^n}$$

int ln_g[MAXN<<2];
void polyexp(int *f,int *g,int n){
    g[0]=1;
    int n1=2,n2=4,pos=2;
    while((n1>>1)<n){
        _for(i,0,n1>>1)ln_g[i]=g[i];_for(i,n1>>1,n2)ln_g[i]=0;
        ployln(ln_g,n1);
        ln_g[0]=(1+f[0]-ln_g[0])%Mod;
        _for(i,1,n1)ln_g[i]=(f[i]-ln_g[i])%Mod;
        _for(i,0,n2)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
        NTT(g,n2,1);NTT(ln_g,n2,1);
        _for(i,0,n2)g[i]=1LL*g[i]*ln_g[i]%Mod;
        NTT(g,n2,-1);
        _for(i,n1,n2)g[i]=0;
        n1<<=1,n2<<=1,pos++;
    }

https://www.luogu.com.cn/problem/P4726
https://www.luogu.com.cn/problem/P4726


2026/02/02 14:57 13/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

    n1>>=1;
    _for(i,n,n1)g[i]=0;
}

多项式快速幂

洛谷p5273

算法简介

给定 $f(x)$，求模 $x^n$ 意义下的 $f^k(x)$，时间复杂度 $O(n\log n)$。

算法实现

考虑取对数将幂次运算转化为乘法运算加速算法。而多项式取对数存在 $[x^0]f(x)=1$ 的限制，大多数情
况下无法直接套用。

于是考虑选取 $f(x)$ 第一个非零的项，即为 $a_tx^t$，然后提取出 $a_tx^t$，得到下式

$$f^k(x)\equiv a_t^kx^{tk}\exp\left(k\ln \frac{f(x)}{a_tx^t}\right)\pmod {x^n}$$

注意到如果 $k$ 为高精度数，需要同时记录 $k\bmod {p-1}$ 和 $k\bmod p$ 的结果。

其中计算 $a_t^k$ 需要 $k\bmod {p-1}$，计算 $k\ln \cfrac{f(x)}{a_tx^t}$ 需要 $k\bmod p$，同时考虑
提前处理 $x^{tk}$ 次数大于 $x^n$ 的情况。

int ln_f[MAXN<<2];
void polypow(int *f,int n,int k1,int k2){
    LL pos=0,posv;
    while(!f[pos]&&pos<n)pos++;
    if(pos==n)return;
    posv=quick_pow(f[pos],Mod-2);
    _for(i,pos,n)ln_f[i-pos]=f[i]*posv%Mod,f[i]=0;
    _for(i,n-pos,n)ln_f[i]=0;
    ployln(ln_f,n);
    _for(i,0,n)ln_f[i]=1LL*ln_f[i]*k1%Mod;
    ployexp(ln_f,f,n);
    pos=pos*k2;posv=quick_pow(posv,1LL*k2*(Mod-2)%(Mod-1));
    for(int i=n-1;i>=pos;i--)f[i]=f[i-pos]*posv%Mod;
    pos=min(pos,1LL*n);
    _for(i,0,pos)f[i]=0;
}

多项式除法

洛谷p4512

https://www.luogu.com.cn/problem/P5273
https://www.luogu.com.cn/problem/P5273
https://www.luogu.com.cn/problem/P4512
https://www.luogu.com.cn/problem/P4512


Last
update:
2020/08/20
17:00

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

https://wiki.cvbbacm.com/ Printed on 2026/02/02 14:57

算法简介

给定 $f(x),g(x)$，不妨记 $\text{deg}(f)=n,\text{deg}(g)=m,n\gt m$。$O(n\log n)$ 时间内求 $q(x),r(x)$
满足 $$f(x)=q(x)g(x)+r(x)\left(\text{deg}(q)=n-m,\text{deg}(r)\lt m\right)$$

算法实现

构造函数 $f^{R}(x)=x^{\text{deg}(f)}f(\frac 1x)$，易知 $f^{R}(x)$ 与 $f(x)$ 系数恰好反转，可以
$O(n)$ 相互转化。

根据已知，有

$$f(\frac 1x)=q(\frac 1x)g(\frac 1x)+r(\frac 1x)$$

将上式两边同时乘以 $x^n$，有

$$f^{R}(x)=q^{R}(x)g^{R}(x)+x^{n-{\text{deg}(r)}}r^{R}(x)$$

由于 $n-{\text{deg}(r)}\ge n-m+1$，于是有

$$f^{R}(x)\equiv q^{R}(x)g^{R}(x)\pmod {x^{n-m+1}}$$

于是可以利用多项式求逆求出 $q^{R}(x)$，然后据此求出 $q(x),r(x)$。

int temp1[MAXN<<2],temp2[MAXN<<2];
void polydiv(int *f,int *g,int *q,int *r,int n,int m){
    _for(i,0,n)temp1[i]=f[n-1-i];
    _for(i,0,m)temp2[i]=g[m-1-i];
    ployinv(temp2,q,n-m+1);
    int N=build(2*n-m-1);
    NTT(q,N,1);NTT(temp1,N,1);
    _for(i,0,N)q[i]=1LL*q[i]*temp1[i]%Mod;
    NTT(q,N,-1);
    _for(i,0,N)temp1[i]=temp2[i]=0;
    for(int i=0,j=n-m;i<j;i++,j--)swap(q[i],q[j]);
    _for(i,n-m+1,N)q[i]=0;
    _for(i,0,n-m+1)temp1[i]=q[i];
    _for(i,0,m)temp2[i]=g[i];
    N=build(n-1);
    NTT(temp1,N,1);NTT(temp2,N,1);
    _for(i,0,N)temp1[i]=1LL*temp1[i]*temp2[i]%Mod;
    NTT(temp1,N,-1);
    _for(i,0,m-1)r[i]=(f[i]+Mod-temp1[i])%Mod;
    _for(i,0,N)temp1[i]=temp2[i]=0;
}



2026/02/02 14:57 15/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式板子汇总

namespace Poly{
    const int G=3;
    int rev[MAXN<<2],Wn[30][2];
    void init(){
        int m=Mod-1,lg2=0;
        while(m%2==0)m>>=1,lg2++;
        Wn[lg2][1]=quick_pow(G,m);
        Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
        while(lg2){
            m<<=1,lg2--;
            Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
            Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
        }
    }
    int build(int k){
        int n,pos=0;
        while((1<<pos)<=k)pos++;
        n=1<<pos;
        _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
        return n;
    }
    void NTT(int *f,int n,bool type){
        _for(i,0,n)if(i<rev[i])
        swap(f[i],f[rev[i]]);
        int t1,t2;
        for(int i=1,lg2=0;i<n;i<<=1,lg2++){
            int w=Wn[lg2+1][type];
            for(int j=0;j<n;j+=(i<<1)){
                int cur=1;
                _for(k,j,j+i){
                    t1=f[k],t2=1LL*cur*f[k+i]%Mod;
                    f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
                    cur=1LL*cur*w%Mod;
                }
            }
        }
        if(!type){
            int div=quick_pow(n,Mod-2);
            _for(i,0,n)f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
        }
    }
    void Mul(int *f,int _n,int *g,int _m,int xmod=0){
        int n=build(_n+_m-2);
        _for(i,_n,n)f[i]=0;_for(i,_m,n)g[i]=0;
        NTT(f,n,true);NTT(g,n,true);
        _for(i,0,n)f[i]=1LL*f[i]*g[i]%Mod;
        NTT(f,n,false);
        if(xmod)_for(i,xmod,n)f[i]=0;



Last
update:
2020/08/20
17:00

2020-2021:teams:legal_string:jxm2001:
多项式_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

https://wiki.cvbbacm.com/ Printed on 2026/02/02 14:57

    }
    void Inv(const int *f,int *g,int _n){
        static int temp[MAXN<<2];
        if(_n==1)return g[0]=quick_pow(f[0],Mod-2),void();
        Inv(f,g,(_n+1)>>1);
        int n=build((_n-1)<<1);
        _for(i,(_n+1)>>1,n)g[i]=0;
        _for(i,0,_n)temp[i]=f[i];_for(i,_n,n)temp[i]=0;
        NTT(g,n,true);NTT(temp,n,true);
        _for(i,0,n)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
        NTT(g,n,false);
        _for(i,_n,n)g[i]=0;
    }
    void Div(const int *f,int _n,const int *g,int _m,int *q,int *r){
        static int temp[MAXN<<2];
        _for(i,0,_m)temp[i]=g[_m-1-i];
        Inv(temp,q,_n-_m+1);
        _for(i,0,_n)temp[i]=f[_n-1-i];
        Mul(q,_n-_m+1,temp,_n,_n-_m+1);
        for(int i=0,j=_n-_m;i<j;i++,j--)swap(q[i],q[j]);
        _for(i,0,_m)r[i]=g[i];_rep(i,0,_n-_m)temp[i]=q[i];
        Mul(r,_m,temp,_n-_m+1,_m);
        _for(i,0,_m)r[i]=(f[i]+Mod-r[i])%Mod;
    }
    void Ln(const int *f,int *g,int _n){
        static int temp[MAXN<<2];
        Inv(f,g,_n);
        _for(i,1,_n)temp[i-1]=1LL*f[i]*i%Mod;
        temp[_n-1]=0;
        Mul(g,_n,temp,_n-1,_n);
        for(int i=_n-1;i;i--)g[i]=1LL*g[i-1]*quick_pow(i,Mod-2)%Mod;
        g[0]=0;
    }
    void Exp(const int *f,int *g,int _n){
        static int temp[MAXN<<2];
        if(_n==1)return g[0]=1,void();
        Exp(f,g,(_n+1)>>1);
        _for(i,(_n+1)>>1,_n)g[i]=0;
        Ln(g,temp,_n);
        temp[0]=(1+f[0]-temp[0])%Mod;
        _for(i,1,_n)temp[i]=(f[i]-temp[i])%Mod;
        Mul(g,(_n+1)>>1,temp,_n,_n);
    }
    void Pow(const int *f,int *g,int _n,int k1,int k2){
        static int temp[MAXN<<2];
        int pos=0,posv;
        while(!f[pos]&&pos<_n)pos++;
        if(1LL*pos*k2>=_n){
            _for(i,0,_n)g[i]=0;
            return;



2026/02/02 14:57 17/17 多项式 3

CVBB ACM Team - https://wiki.cvbbacm.com/

        }
        posv=quick_pow(f[pos],Mod-2);
        _for(i,pos,_n)g[i-pos]=1LL*f[i]*posv%Mod;
        _for(i,_n-pos,_n)g[i]=0;
        Ln(g,temp,_n);
        _for(i,0,_n)temp[i]=1LL*temp[i]*k1%Mod;
        Exp(temp,g,_n);
        pos=pos*k2,posv=quick_pow(posv,1LL*k2*(Mod-2)%(Mod-1));
        for(int i=_n-1;i>=pos;i--)g[i]=1LL*g[i-pos]*posv%Mod;
        _for(i,0,pos)g[i]=0;
    }
    void Sqrt(const int *f,int *g,int _n){
        static int temp1[MAXN<<2],temp2[MAXN<<2];
        if(_n==1)return g[0]=quick_pow(G,bsgs(3,f[0])/2),void();
        Sqrt(f,g,(_n+1)>>1);
        _for(i,(_n+1)>>1,_n)g[i]=0;
        _for(i,0,_n)temp1[i]=f[i];
        Inv(g,temp2,_n);
        Mul(temp1,_n,temp2,_n);
        int div2=quick_pow(2,Mod-2);
        _for(i,0,_n)g[i]=1LL*(g[i]+temp1[i])*div2%Mod;
    }
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

Last update: 2020/08/20 17:00

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_3&rev=1597914058

	多项式 3
	倍增 FFT
	算法简介
	算法例题
	题意
	题解


	分治 FFT
	算法简介
	算法例题
	题意
	题解

	算法练习
	题意
	题解


	多项式求逆
	算法简介
	算法实现

	多项式开根
	算法简介
	算法实现

	多项式对数函数
	算法简介
	算法实现

	多项式牛顿迭代法
	算法简介
	算法实现

	多项式指数函数
	算法简介
	算法实现

	多项式快速幂
	算法简介
	算法实现

	多项式除法
	算法简介
	算法实现

	多项式板子汇总


