
2026/02/03 18:49 1/12 多项式 4

CVBB ACM Team - https://wiki.cvbbacm.com/

多项式 4

循环卷积

定义

$$c_k=\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}[i+j\bmod p=k]a_ib_j$$

性质

对序列 A,B 做长度为 n 的 FFT 等价于求序列 A,B 的长度为 n 的循环卷积。

考虑单位根反演证明

$$ \begin{equation}\begin{split} c_k&=\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}[i+j\bmod p=k]a_ib_j\\
&=\frac 1n\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}\sum_{d=0}^{n-1}w_n^{d(i+j-k)}a_ib_j\\ &=\frac
1n\sum_{d=0}^{n-1}w_n^{-dk}\sum_{i=0}^{n-1}\sum_{j=0}^{n-1}w_n^{di}a_iw_n^{dj}b_j\\
&=\frac 1n\sum_{d=0}^{n-1}w_n^{-
dk}\left(\sum_{i=0}^{n-1}a_iw_n^{di}\right)\left(\sum_{j=0}^{n-1}b_jw_n^{dj}\right)
\end{split}\end{equation} $$ 不难发现
$\left(\sum_{i=0}^{n-1}a_iw_n^{di}\right)\left(\sum_{j=0}^{n-1}b_jw_n^{dj}\right)$ 即为原来的
DFT 过程，$\frac 1n\sum_{d=0}^{n-1}w_n^{-dk}$ 即为原来的 IDFT，证毕。

事实上普通的卷积计算相当于长度为 2^n 的循环卷积计算，只是循环卷积长度大于 C 序列的长度，
所以循环卷积结果即为普通卷积结果。

值得一提的是，循环卷积的求逆、快速幂等操作直接对 DFT 的点值进行相应运算即可。

另外注意到 $f(w^{-k})=f(w^{n-k})$，于是循环卷积的 IDFT 过程可以通过将序列 $[1,n-1]$ 部
分翻转再 DFT 的方式实现。

Cooley–Tukey FFT algorithm

算法实现

普通 DFT 过程是将序列根据奇偶幂次分成两段经行递归，现考虑将序列分成 d 段进行递归，
设

$$f(x)=a_0+a_1x^1+a_2x^2+\cdots
a_{n-1}x^{n-1},f_k(x)=a_kx^k+a_{d+k}x^{d+k}+a_{2d+k}x^{2d+k}+\cdots+a_{n-d+k}x^{n-
d+k}(0\le k\lt d),m=\frac nd$$

于是有

$$f(w_n^{im+j})=\sum_{k=0}^{d-1}w_n^{(im+j)k}f_k(w_n^{(im+j)d})=\sum_{k=0}^{d-1}w_n^
{(im+j)k}f_k(w_n^{in}w_n^{jd})=\sum_{k=0}^{d-1}w_n^{(im+j)k}f_k(w_m^j)$$

Last
update:
2020/08/24
23:52

2020-2021:teams:legal_string:jxm2001:
多项式_4

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_4&rev=1598284372

https://wiki.cvbbacm.com/ Printed on 2026/02/03 18:49

计算出每个点值的时间为 $O(d)$，每层共 $O(n)$ 个点值。设 $n=p_1^{\alpha_1}p_2^{\alpha_2}\cdots
p_k^{\alpha_k}$，于是总时间复杂度 $O\left(n\sum_{i=1}^k p_i\alpha_i\right)$。

算法例题

洛谷p4191

给定长度为 n 的序列 A,B，计算 AB^C 的长度为 n 的循环卷积模 $n+1$ 意义下的值。

数据保证 $n+1$ 为素数，$n\le 5\times 10^5$，n 的最大质因子不超过 10。

题解

$\text{Cooley–Tukey FFT algorithm}$ 板子题，DFT 后直接对点值快速幂即可，时间复杂度
$O(7n\log n)$

const int MAXN=5e5+5,MAXM=20,MAX_div=7;
int p;
int quick_pow(int a,int b){
 int ans=1;
 while(b){
 if(b&1)ans=1LL*ans*a%p;
 a=1LL*a*a%p;
 b>>=1;
 }
 return ans;
}
vector<int> pdiv,frac,Wn[MAXM];
bool check(int x){
 _for(i,0,pdiv.size()){
 if(quick_pow(x,(p-1)/pdiv[i])==1)
 return false;
 }
 return true;
}
void get_G(int n){
 int temp=p-1,g;
 for(int i=2;i*i<=temp;i++){
 if(temp%i==0){
 pdiv.push_back(i);
 while(temp%i==0)temp/=i;
 }
 }
 if(temp!=1)pdiv.push_back(temp);
 _for(i,2,p){
 if(check(i)){
 g=i;

https://www.luogu.com.cn/problem/P4191
https://www.luogu.com.cn/problem/P4191

2026/02/03 18:49 3/12 多项式 4

CVBB ACM Team - https://wiki.cvbbacm.com/

 break;
 }
 }
 temp=n;
 for(int i=2;i*i<=temp;i++){
 while(temp%i==0){
 frac.push_back(i);
 temp/=i;
 }
 }
 if(temp!=1)frac.push_back(temp);
 int len=n,wn;
 _for(i,0,frac.size()){
 Wn[i].resize(len);
 wn=quick_pow(g,(p-1)/len),Wn[i][0]=1;
 _for(j,1,len)Wn[i][j]=1LL*Wn[i][j-1]*wn%p;
 len/=frac[i];
 }
}
int temp[MAXN];
void DFT(int *f,int n,int dep=0){
 if(n==1)return;
 memcpy(temp,f,sizeof(int)*n);
 int m=n/frac[dep],d=frac[dep],*g[MAX_div];
 _for(i,0,d)g[i]=f+i*m;
 for(int i=0,k=0;i<n;i+=d,k++){
 _for(j,0,d)
 g[j][k]=temp[i+j];
 }
 _for(i,0,d)DFT(g[i],m,dep+1);
 _for(i,0,d){
 _for(j,0,m){
 int pos=i*m+j;
 temp[pos]=0;
 _for(k,0,d)
 temp[pos]=(temp[pos]+1LL*Wn[dep][pos*k%n]*g[k][j])%p;
 }
 }
 memcpy(f,temp,sizeof(int)*n);
}
void IDFT(int *f,int n){
 reverse(f+1,f+n);
 DFT(f,n);
 int div=quick_pow(n,p-2);
 _for(i,0,n)f[i]=1LL*f[i]*div%p;
}
int a[MAXN],b[MAXN];
int main()
{
 int n=read_int(),k=read_int();
 p=n+1;

Last
update:
2020/08/24
23:52

2020-2021:teams:legal_string:jxm2001:
多项式_4

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_4&rev=1598284372

https://wiki.cvbbacm.com/ Printed on 2026/02/03 18:49

 get_G(n);
 _for(i,0,n)a[i]=read_int();
 _for(i,0,n)b[i]=read_int();
 DFT(a,n);DFT(b,n);
 _for(i,0,n)a[i]=1LL*a[i]*quick_pow(b[i],k)%p;
 IDFT(a,n);
 _for(i,0,n)enter(a[i]);
 return 0;
}

Bluestein's Algotithm

算法实现

考虑 DFT 过程，有

$$ \begin{equation}\begin{split} y_k&=\sum_{i=0}^{n-1}a_iw_n^{ki}\\
&=\sum_{i=0}^{n-1}a_iw_n^{{k+i\choose 2}-{k\choose 2}-{i\choose 2}}\\ &=w_n^{-{k\choose
2}}\sum_{i=0}^{n-1}\left(a_iw_n^{-{i\choose 2}}\right)w_n^{{k+i\choose 2}}
\end{split}\end{equation} $$ 其中 ${n\choose 2}$ 表示组合数，易知上式可以通过普通卷积求解。

考虑 IDFT 过程，同样有

$$ \begin{equation}\begin{split} a_k&=\frac 1n\sum_{i=0}^{n-1}y_iw_n^{-ki}\\ &=\frac
1n\sum_{i=0}^{n-1}y_iw_n^{-{k+i\choose 2}+{k\choose 2}+{i\choose 2}}\\ &=\frac
1nw_n^{{k\choose 2}}\sum_{i=0}^{n-1}\left(y_iw_n^{{i\choose 2}}\right)w_n^{-{k+i\choose 2}}
\end{split}\end{equation} $$

算法例题

洛谷p5293

给定一个二维 $[L+1]\times n$ 的空间，其中 $(u_1,v_1)\to (u_2,v_2)$ 有 w_{v_1,v_2} 条重边。

假设起点为 $(0,x)$，终点为 (\ast,y)(\ast 为任意值)，路径长度 m 定义为路径的边数。

对每个 $0\le t\lt k$，求满足所有 $m\equiv t\pmod k$ 且横坐标单增的路径数模 p 意义下的值。

数据保证 p 为素数，$10^8\le p\le 2^{30},k\mid p-1,1\le k\lt 65536,1\le n\le 3,L\le 10^9$。

题解

假设 $f_{a,b}$ 表示 $m=a$ 且 $y=b$ 的路径数，$g_{a,b}$ 表示将空间的 X 维消去后 $m=a$ 且
$y=b$ 的路径数。

于是有状态转移方程

https://www.luogu.com.cn/problem/P5293
https://www.luogu.com.cn/problem/P5293

2026/02/03 18:49 5/12 多项式 4

CVBB ACM Team - https://wiki.cvbbacm.com/

$$g_{a,b}=\sum_{i=1}^n g_{a-1,i}w_{i,b}\text{ },\text{ }f_{a,b}={L\choose a}g_{a,b}$$

设矩阵

$$W=\begin{bmatrix}w_{1,1} & \cdots & w_{1,n} \\ \vdots &\ddots & \vdots \\ w_{n,1} &\cdots &
w_{n,n}\end{bmatrix}$$

设 $G_i=(g_{i,1}\cdots g_{i,n})$，于是有 $G_i=G_0W^i$。

考虑单位根反演，设 $w_k\equiv g^{\frac {p-1}k}\pmod p,g$ 为 p 的原根，有

$$ \begin{equation}\begin{split} \text{ans}_t&=\sum_{i=0}^Lf_{i,y}[i\bmod k=t]\\ &=\frac
1k\sum_{i=0}^Lf_{i,y}\sum_{j=0}^{k-1}w_k^{(i-t)j}\\ &=\frac 1k\sum_{j=0}^{k-1}w_k^{-
tj}\sum_{i=0}^L f_{i,y}w_k^{ij} \end{split}\end{equation} $$ 根据二项式定理，有
$$\sum_{i=0}^L w_k^{ij}(f_{i,1}\cdots f_{i,n})=\sum_{i=0}^L w_k^{ij}{L\choose i}(g_{i,1}\cdots
g_{i,n})=G_0\sum_{i=0}^L {L\choose i}\left(w_k^jW\right)^i=G_0\left(w_k^jW+I\right)^L$$ 于是根
据矩阵快速幂可以 $O(kn^3\log L)$ 计算出所有 $h_j=\sum_{i=0}^L f_{i,y}w_k^{ij}(0\le j\lt k)$。

于是有

$$\text{ans}_t=\frac 1k\sum_{i=0}^{k-1}w_k^{-ti}h_i$$

发现上式就是 $\text{Bluestein's Algotithm}$ 的 IDFT 过程，直接求解时间复杂度 $O(k\log k)$。

总时间复杂度 $O(kn^3\log L)$，主要用于计算矩阵快速幂。

const int MAXN=1<<16|5;
const long double pi=acos(-1.0);
int p,sz,gw[MAXN];
int quick_pow(int a,int b){
 int ans=1;
 while(b){
 if(b&1)ans=1LL*ans*a%p;
 a=1LL*a*a%p;
 b>>=1;
 }
 return ans;
}
vector<int> pdiv;
bool check(int x){
 _for(i,0,pdiv.size()){
 if(quick_pow(x,(p-1)/pdiv[i])==1)
 return false;
 }
 return true;
}
void get_G(int k){
 int temp=p-1,g;
 for(int i=2;i*i<=temp;i++){
 if(temp%i==0){
 pdiv.push_back(i);
 while(temp%i==0)temp/=i;

Last
update:
2020/08/24
23:52

2020-2021:teams:legal_string:jxm2001:
多项式_4

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_4&rev=1598284372

https://wiki.cvbbacm.com/ Printed on 2026/02/03 18:49

 }
 }
 if(temp!=1)pdiv.push_back(temp);
 _for(i,2,p){
 if(check(i)){
 g=i;
 break;
 }
 }
 int w=quick_pow(g,(p-1)/k);
 gw[0]=1;
 _rep(i,1,k)gw[i]=1LL*gw[i-1]*w%p;
}
struct Matrix{
 int ele[3][3];
 Matrix(int x=0){
 mem(ele,0);
 _for(i,0,sz)ele[i][i]=x;
 }
 Matrix operator + (const Matrix b){
 Matrix c;
 _for(i,0,sz)
 _for(j,0,sz)
 c.ele[i][j]=(ele[i][j]+b.ele[i][j])%p;
 return c;
 }
 Matrix operator * (const int b){
 Matrix c;
 _for(i,0,sz)
 _for(j,0,sz)
 c.ele[i][j]=1LL*ele[i][j]*b%p;
 return c;
 }
 void operator *= (const Matrix b){
 Matrix c=*this;
 _for(i,0,sz)
 _for(j,0,sz){
 ele[i][j]=0;
 _for(k,0,sz)
 ele[i][j]=(ele[i][j]+1LL*c.ele[i][k]*b.ele[k][j])%p;
 }
 }
};
Matrix quick_pow(const Matrix &a,int k){
 Matrix Ans(1),Base;
 Base=a;
 while(k){
 if(k&1)Ans*=Base;
 k>>=1;
 Base*=Base;

2026/02/03 18:49 7/12 多项式 4

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 return Ans;
}
struct complex{
 long double x,y;
 complex(long double x=0.0,long double y=0.0):x(x),y(y){}
 complex operator + (const complex &b){
 return complex(x+b.x,y+b.y);
 }
 complex operator - (const complex &b){
 return complex(x-b.x,y-b.y);
 }
 complex operator * (const complex &b){
 return complex(x*b.x-y*b.y,x*b.y+y*b.x);
 }
};
int rev[MAXN<<2];
int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
}
void FFT(complex *f,int n,int type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 complex t1,t2;
 for(int i=1;i<n;i<<=1){
 complex w(cos(pi/i),type*sin(pi/i));
 for(int j=0;j<n;j+=(i<<1)){
 complex cur(1.0,0.0);
 _for(k,j,j+i){
 t1=f[k],t2=cur*f[k+i];
 f[k]=t1+t2,f[k+i]=t1-t2;
 cur=cur*w;
 }
 }
 }
 if(type==-1)_for(i,0,n)
 f[i].x/=n,f[i].y/=n;
}
void FFT2(complex *f1,complex *f2,int n){
 FFT(f1,n,1);
 f2[0].x=f1[0].x,f2[0].y=-f1[0].y;
 _for(i,1,n)
 f2[i].x=f1[n-i].x,f2[i].y=-f1[n-i].y;
 complex t1,t2;
 _for(i,0,n){
 t1=f1[i],t2=f2[i];
 f1[i]=complex((t1.x+t2.x)*0.5,(t1.y+t2.y)*0.5);

Last
update:
2020/08/24
23:52

2020-2021:teams:legal_string:jxm2001:
多项式_4

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_4&rev=1598284372

https://wiki.cvbbacm.com/ Printed on 2026/02/03 18:49

 f2[i]=complex((t1.y-t2.y)*0.5,(t2.x-t1.x)*0.5);
 }
}
void MTT(int *f,int n1,int *g,int n2,int *ans,int mod){
 static complex
f1[MAXN<<2],f2[MAXN<<2],g1[MAXN<<2],g2[MAXN<<2],temp[2][MAXN<<2];
 int n=build(n1+n2),m=sqrt(mod)+1;
 _rep(i,0,n1)f1[i].x=f[i]/m,f1[i].y=f[i]%m;
 _rep(i,0,n2)g1[i].x=g[i]/m,g1[i].y=g[i]%m;
 FFT2(f1,f2,n);FFT2(g1,g2,n);
 complex I(0.0,1.0);
 _for(i,0,n){
 temp[0][i]=f1[i]*g1[i]+I*f2[i]*g1[i];
 temp[1][i]=f1[i]*g2[i]+I*f2[i]*g2[i];
 }
 FFT(temp[0],n,-1);FFT(temp[1],n,-1);
 LL a,b,c;
 _rep(i,0,n1+n2){
a=temp[0][i].x+0.5,b=temp[0][i].y+temp[1][i].x+0.5,c=temp[1][i].y+0.5;
 ans[i]=((a%mod*m%mod*m%mod+b%mod*m%mod+c%mod)%mod+mod)%mod;
 }
}
Matrix W;
int a[MAXN<<2],b[MAXN<<2],c[MAXN<<2];
int main()
{
 int k,L,x,y;
sz=read_int(),k=read_int(),L=read_int(),x=read_int()-1,y=read_int()-1,p=rea
d_int();
 get_G(k);
 _for(i,0,sz)
 _for(j,0,sz)
 W.ele[i][j]=read_int();
 _for(i,0,k){
 Matrix temp=quick_pow(W*gw[i]+Matrix(1),L);
 a[i]=1LL*temp.ele[x][y]*gw[1LL*i*(i-1)/2%k]%p;
 }
 _for(i,0,2*k-1)b[i]=gw[k-1LL*i*(i-1)/2%k]%p;
 reverse(a,a+k);
 MTT(a,k-1,b,2*k-2,c,p);
 int div=quick_pow(k,p-2);
 _for(i,0,k)
 enter(1LL*div*gw[1LL*i*(i-1)/2%k]%p*c[k-1+i]%p);
 return 0;
}

常系数齐次线性递推

2026/02/03 18:49 9/12 多项式 4

CVBB ACM Team - https://wiki.cvbbacm.com/

算法简介

给定 $a_n=f_1a_{n-1}+f_2a_{n-2}+\cdots +f_ka_{n-k}$ 以及 $a_0,a_1\cdots a_{k-1}$，$O(k\log k\log
n)$ 时间求 a_n。

算法实现

洛谷p4723

考虑求斐波那契数列过程，$f_5=f_4+f_3=2f_3+f_2=3f_2+2f_1=5f_1+3f_0$。

从多项式角度上考虑该过程，$f_n=f_{n-1}+f_{n-2}$ 的特征多项式为 x^2-x-1，并且有

$$ \begin{matrix} &0x^0&+0x^1&+0x^2&+0x^3&+0x^4&+1x^5\\
\equiv&0x^0&+0x^1&+0x^2&+1x^3&+1x^4&+0x^5\\
\equiv&0x^0&+0x^1&+1x^2&+2x^3&+0x^4&+0x^5\\
\equiv&0x^0&+3x^1&+2x^2&+0x^3&+0x^4&+0x^5\\
\equiv&3x^0&+5x^1&+0x^2&+0x^3&+0x^4&+0x^5&\pmod {x^2-x-1} \end{matrix} $$

于是 $f_5=\left(x^5\bmod {x^2-x-1}\right)\cdot (f_0,f_1)=(3,5)\cdot (f_0,f_1)$。

以此类推，对 $a_n=f_1a_{n-1}+f_2a_{n-2}+\cdots +f_ka_{n-k}$，其特征多项式为 $x^k-f_1x^{k-1}-
f_2x^{k-2}-\cdots -f_k$。

于是 $a_n= \left(x^n\bmod {x^k-f_1x^{k-1}-f_2x^{k-2}-\cdots -f_k}\right)\cdot (a_0,a_1\cdots
a_{k-1})$。

其中 $\left(x^n\bmod {x^k-f_1x^{k-1}-f_2x^{k-2}-\cdots -f_k}\right)$ 可以通过快速幂与多项式带余
除法 $O(k\log k\log n)$ 计算。

发现每次带余除法计算时 $g(x)$ 都是固定的，可以考虑先计算出 $\frac 1{g^R(x)}$ 减小常数。

const int MAXN=64005,Mod=998244353;
int quick_pow(int a,int b){
 int ans=1;
 while(b){
 if(b&1)
 ans=1LL*ans*a%Mod;
 a=1LL*a*a%Mod;
 b>>=1;
 }
 return ans;
}
namespace Poly{
 const int G=3;
 int rev[MAXN<<2],Wn[30][2];
 void init(){
 int m=Mod-1,lg2=0;
 while(m%2==0)m>>=1,lg2++;
 Wn[lg2][1]=quick_pow(G,m);

https://www.luogu.com.cn/problem/P4723
https://www.luogu.com.cn/problem/P4723

Last
update:
2020/08/24
23:52

2020-2021:teams:legal_string:jxm2001:
多项式_4

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_4&rev=1598284372

https://wiki.cvbbacm.com/ Printed on 2026/02/03 18:49

 Wn[lg2][0]=quick_pow(Wn[lg2][1],Mod-2);
 while(lg2){
 m<<=1,lg2--;
 Wn[lg2][0]=1LL*Wn[lg2+1][0]*Wn[lg2+1][0]%Mod;
 Wn[lg2][1]=1LL*Wn[lg2+1][1]*Wn[lg2+1][1]%Mod;
 }
 }
 int build(int k){
 int n,pos=0;
 while((1<<pos)<=k)pos++;
 n=1<<pos;
 _for(i,0,n)rev[i]=(rev[i>>1]>>1)|((i&1)<<(pos-1));
 return n;
 }
 void NTT(int *f,int n,bool type){
 _for(i,0,n)if(i<rev[i])
 swap(f[i],f[rev[i]]);
 int t1,t2;
 for(int i=1,lg2=0;i<n;i<<=1,lg2++){
 int w=Wn[lg2+1][type];
 for(int j=0;j<n;j+=(i<<1)){
 int cur=1;
 _for(k,j,j+i){
 t1=f[k],t2=1LL*cur*f[k+i]%Mod;
 f[k]=(t1+t2)%Mod,f[k+i]=(t1-t2)%Mod;
 cur=1LL*cur*w%Mod;
 }
 }
 }
 if(!type){
 int div=quick_pow(n,Mod-2);
 _for(i,0,n)f[i]=(1LL*f[i]*div%Mod+Mod)%Mod;
 }
 }
 void Mul(int *f,int _n,int *g,int _m,int xmod=0){
 int n=build(_n+_m-2);
 _for(i,_n,n)f[i]=0;_for(i,_m,n)g[i]=0;
 NTT(f,n,true);NTT(g,n,true);
 _for(i,0,n)f[i]=1LL*f[i]*g[i]%Mod;
 NTT(f,n,false);
 if(xmod)_for(i,xmod,n)f[i]=0;
 }
 void Inv(const int *f,int *g,int _n){
 static int temp[MAXN<<2];
 if(_n==1)return g[0]=quick_pow(f[0],Mod-2),void();
 Inv(f,g,(_n+1)>>1);
 int n=build((_n-1)<<1);
 _for(i,(_n+1)>>1,n)g[i]=0;
 _for(i,0,_n)temp[i]=f[i];_for(i,_n,n)temp[i]=0;
 NTT(g,n,true);NTT(temp,n,true);

2026/02/03 18:49 11/12 多项式 4

CVBB ACM Team - https://wiki.cvbbacm.com/

 _for(i,0,n)g[i]=(2-1LL*temp[i]*g[i]%Mod)*g[i]%Mod;
 NTT(g,n,false);
 _for(i,_n,n)g[i]=0;
 }
 void Div(int *f,int _n,const int *g,int _m,int *gR){
 static int temp[MAXN<<2],q[MAXN<<2],r[MAXN<<2];
 _rep(i,0,_n-_m)q[i]=gR[i];
 _rep(i,0,_n)temp[i]=f[_n-i];
 Mul(q,_n-_m+1,temp,_n+1,_n-_m+1);
 for(int i=0,j=_n-_m;i<j;i++,j--)swap(q[i],q[j]);
 int __m=min(_n-_m+1,_m);
 _for(i,0,_m)r[i]=g[i];_for(i,0,__m)temp[i]=q[i];
 Mul(r,_m,temp,__m,_m);
 _for(i,0,_m)f[i]=(f[i]+Mod-r[i])%Mod;
 }
 void Pow_2(int *f,int _n,const int *g,int _m){
 static int temp1[MAXN<<2],temp2[MAXN<<2];
 _rep(i,0,_m)temp1[i]=g[_m-i];
 Inv(temp1,temp2,_m-1);
 mem(temp1,0);
 temp1[0]=1;
 while(_n){
 int n=build(_m+_m-2);
 _for(i,_m,n)f[i]=0;
 NTT(f,n,true);
 if(_n&1){
 _for(i,_m,n)temp1[i]=0;
 NTT(temp1,n,true);
 _for(i,0,n)temp1[i]=1LL*f[i]*temp1[i]%Mod;
 NTT(temp1,n,false);
 }
 _for(i,0,n)f[i]=1LL*f[i]*f[i]%Mod;
 NTT(f,n,false);
 if(_n&1)Div(temp1,_m+_m-2,g,_m,temp2);
 Div(f,_m+_m-2,g,_m,temp2);
 _n>>=1;
 }
 mem(f,0);
 _for(i,0,_m)f[i]=temp1[i];
 }
}
int f[MAXN<<2],g[MAXN<<2],a[MAXN];
int main()
{
 Poly::init();
 int n=read_int(),k=read_int();
 g[k]=1;
 for(int i=k-1;i>=0;i--)g[i]=-read_int();
 _for(i,0,k)a[i]=read_int();
 f[1]=1;
 Poly::Pow_2(f,n,g,k);

Last
update:
2020/08/24
23:52

2020-2021:teams:legal_string:jxm2001:
多项式_4

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_4&rev=1598284372

https://wiki.cvbbacm.com/ Printed on 2026/02/03 18:49

 int ans=0;
 _for(i,0,k)ans=(ans+1LL*f[i]*a[i])%Mod;
 enter((ans+Mod)%Mod);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_4&rev=1598284372

Last update: 2020/08/24 23:52

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%A4%9A%E9%A1%B9%E5%BC%8F_4&rev=1598284372

	多项式 4
	循环卷积
	定义
	性质
	Cooley–Tukey FFT algorithm
	算法实现
	算法例题
	题解

	Bluestein's Algotithm
	算法实现
	算法例题
	题解

	常系数齐次线性递推
	算法简介
	算法实现

