
2026/01/23 22:05 1/6 字符串 1

CVBB ACM Team - https://wiki.cvbbacm.com/

字符串 1

KMP 算法

算法简介

给定两个字符串 S_1,S_2，查询 S_2 在 S_1 中出现的位置。时间复杂度 $O(|S_1|+|S_2|)$。

算法实现

洛谷p3375

定义字符串 S 的前缀函数 f 表示 S 的最长的相等的真前缀和真后缀，先考虑计算模式串 S_2 的
f 函数。

对 $f(i+1)$，可以考虑从大到小枚举 $s[1,i]$ 的相等真前后缀，首先最大相等真前后缀为 $f(i)$，考虑下面
的串

$$s_1s_2\cdots s_{f(i)}s_{f(i)+1}\cdots s_{i-f(i)+1}s_{i-f(i)+2}\cdots s_is_{i+1}$$

已知 $s[1,f(i)]=s[i-f(i)+1,i]$，于是如果 $s_{i+1}=s_{f(i)+1}$，则有 $f(i+1)=f(i)+1$。

如果 $s_{i+1}\neq s_{f(i)+1}$，则只能考虑第二长的真前后缀，暂时记为 j。

于是有 $s[1,j]=s[i-j+1,i]=s[f(i)-j+1,f(i)]$，发现 j 是 $s[1,f(i)]$ 的真前后缀，于是有 $j=f(f(i))$。

不停尝试，直到 $j=0$ 即没有满足条件真前后缀，可以停止尝试。

考虑动态维护当前真前后缀即可，j 指针每次最多增加 1，每次匹配失败至少减少 1，最多增加
$|s_2|$ 次，所以时间复杂度为 $O(|s_2|)$。

接下来考虑匹配过程，事实上匹配过程当匹配失败后直接跳到上一个相等的真前后缀继续比较即可，类似
地有时间复杂度为 $O(|s_1|)$。

于是总时间复杂度 $O(|s_1|+|s_2|)$。

const int MAXN=1e6+5;
namespace KMP{
 int f[MAXN];
 void find(char *s1,int n,char *s2,int m){//s下标从1开始
 int pos=0;
 f[1]=0;
 _rep(i,2,m){
 while(pos&&s2[i]!=s2[pos+1])pos=f[pos];
 if(s2[i]==s2[pos+1])pos++;
 f[i]=pos;
 }
 pos=0;

https://www.luogu.com.cn/problem/P3375
https://www.luogu.com.cn/problem/P3375

Last
update:
2020/08/26
20:10

2020-2021:teams:legal_string:jxm2001:
字符串_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_1&rev=1598443817

https://wiki.cvbbacm.com/ Printed on 2026/01/23 22:05

 _rep(i,1,n){
 while(pos&&s1[i]!=s2[pos+1])pos=f[pos];
 if(s1[i]==s2[pos+1])pos++;
 if(pos==m){
 printf("%d\n",i-pos+1);
 pos=f[pos];
 }
 }
 }
}
char buf[MAXN],str[MAXN];
int main()
{
 scanf("%s%s",buf+1,str+1);
 int n=strlen(buf+1),m=strlen(str+1);
 KMP::find(buf,n,str,m);
 _rep(i,1,m)space(KMP::f[i]);
 return 0;
}

应用

循环串

考虑串 $abcabcabc$，发现 $f(n)=6$，去掉 $f(6)$ 长度的后缀后可以得到串 abc，发现该串恰好为
abc 为最大周期的循环串。

于是有结论若 $n-f(n)\mid n$，则 $s[1,n]$ 为以 $s[1,n-f(n)]$ 为最大周期的循环串。

考虑串 $abcabca$，发现 $f(7)=4$，去掉 $f(7)$ 长度的后缀后可以得到串 abc，发现只要在串的末尾补
上 bc 就可以构造以 abc 为周期的串。

于是有结论若 $n-f(n)\nmid n$，则在 $s[1,n]$ 末尾补上长度为 $n-f(n)-(n\bmod {(n-f(n))})$ 可以构成以
$s[1,n-f(n)]$ 为最大周期的循环串。

前缀统计

考虑对串 s，统计 s 的每个前缀在 s 中的出现次数。

先考虑统计所有形如 $s[l,r](l\gt 1)$ 的串对答案的贡献，发现这些串等价于所有 $s[1,r]$ 的真后缀集合。

考虑串 $s[1,i]$ 的所有真后缀，同时他们对 $f(i),f(f(i)),f(f(f(i)))\cdots$ 的前缀产生贡献。

于是从 n 到 1 依次转移真后缀的贡献，最后补上所有前缀的贡献即可。

int cnt[MAXN];
void cal(int *s,int n){
 get_f(s,n);

2026/01/23 22:05 3/6 字符串 1

CVBB ACM Team - https://wiki.cvbbacm.com/

 _rep(i,1,n)cnt[f[i]]++;
 for(int i=n;i;i--)cnt[f[i]]+=cnt[i];
 _rep(i,1,n)cnt[i]++;
}

接下来考虑统计串 t 的每个前缀在串 s 中的出现次数。

事实上，直接先将与每个 $s[1,i]$ 的后缀匹配的 t 的最长的前缀加入桶，然后按上述方式转移即可。

不同子串统计

一开始建立一个空串，考虑每次向空串中加入新字母。

假设当前串为 s，新加入的字母为 c，设 $t=s+c,t'=reverse(t),|t|=n$。

对串 t' 跑 KMP 算法，显然如果有 $f(i)=j$，则表示 $t'[1,j]=t'[i-j+1,i]$。

这等价于 $t[n-j+1,n]=t[n-i+1,n-i+j]$，于是 $t[n-j+1,n]$ 不是新子串。

设 $m=\max(f(i))$，于是有 $t'[1,i](i\gt m)$ 在 t' 中唯一，同样也在 t 中唯一，于是 $t[n-i+1,n](i\gt
m)$ 为新子串。

算法练习

习题一

UVA11022

题意

给定一个字符串 s，求 s 压缩后的最小长度。

压缩示例：

$abaaba\to ab(a)^2ba$，长度 $6\to 5$，但这不是最佳方案1.
$abaaba\to (aba)^2$，长度 $6\to 3$2.
$abbabb\to (a(b)^2)^2$，长度 $6\to 2$3.

题解

考虑一个字符串 s，要么 $s=s_1+s_2$，要么 $s=(s_3)^k$。

考虑区间 dp，对情况一，有 $\text{dp}(l,r)=\min_{l\le i\lt r}(\text{dp}(l,i)+\text{dp}(i+1,r))$。

对情况二，考虑求出 s 的周期 d，有 $\text{dp}(l,r)=\text{dp}(l,l+d-1)$。

边界条件 $l=r,\text{dp}(l,r)=1$。时间复杂度 $O(n^3)$。

https://www.luogu.com.cn/problem/UVA11022

Last
update:
2020/08/26
20:10

2020-2021:teams:legal_string:jxm2001:
字符串_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_1&rev=1598443817

https://wiki.cvbbacm.com/ Printed on 2026/01/23 22:05

const int MAXN=100;
namespace KMP{
 int f[MAXN];
 int get_loop(char *s,int n){
 int pos=0;
 f[1]=0;
 _rep(i,2,n){
 while(pos&&s[i]!=s[pos+1])pos=f[pos];
 if(s[i]==s[pos+1])pos++;
 f[i]=pos;
 }
 if(!f[n]||n%(n-f[n]))return 0;
 return n-f[n];
 }
}
int dp[MAXN][MAXN];
char buf[MAXN];
int dfs(int lef,int rig){
 if(~dp[lef][rig])return dp[lef][rig];
 if(lef==rig)return 1;
 int ans=MAXN;
 _for(i,lef,rig)
 ans=min(ans,dfs(lef,i)+dfs(i+1,rig));
 int len=KMP::get_loop(buf+lef-1,rig-lef+1);
 if(len)ans=min(ans,dfs(lef,lef+len-1));
 return dp[lef][rig]=ans;
}
int main()
{
 while(~scanf("%s",buf+1)){
 if(buf[1]=='*')break;
 int n=strlen(buf+1);
 mem(dp,-1);
 enter(dfs(1,n));
 }
 return 0;
}

习题二

CF808G

题意

给定一个字符串 s 和模式串 t，s 只包含 26 个小写字母和 ?，t 只包含 26 个小写字
母。

https://www.luogu.com.cn/problem/CF808G

2026/01/23 22:05 5/6 字符串 1

CVBB ACM Team - https://wiki.cvbbacm.com/

将 s 中的所有 ? 替换为任意小写字母，使得 t 出现次数最大。

题解

不妨设 $|s|=n,|t|=m$。

设 $\text{dp}_1(i)$ 表示 $s[1,i]$ 的所有方案中 t 出现的最大次数，$\text{dp}_2(i)$ 表示 $s[1,i]$ 的
满足 s 长度为 m 的后缀为 t 的方案中 t 出现的最大次数。

首先有 $\text{dp}_1(i)=\max(\text{dp}_1(i-1),\text{dp}_2(i))$，表示 $s[1,i]$ 的长度为 m 的后缀是
否为 t。

接下来考虑 $\text{dp}_2(i)$，显然如果 $s[1,i]$ 的长度为 m 的后缀无法变成 t，则
$\text{dp}_2(i)=0$。

否则考虑是否存在 $i-m\lt j\lt i$ 使得 $s[1,j]$ 的长度为 m 的后缀为 t，如果不存在 j，则显然有
$\text{dp}_2(i)=\text{dp}_1(i-m)+1$。

如果存在 j 满足上述条件，取最小的 j，则一定有 $\text{dp}_2(i)=\text{dp}_2(i-m+j)+1$。对其余所
有 j，有 $\text{dp}_2(i)\ge\text{dp}_2(i-m+j)+1$。

同时对所有满足条件的 j，不难发现有 $t[1,m]$ 的长度为 j 的前后缀相同。

由于无法判断 j 是否满足上述条件，于是暴力跳 t 的 f 函数枚举每个 j 即可。

总时间复杂度 $O(nm)$。

const int MAXN=1e5+5;
int f[MAXN];
void get_f(char *s,int n){
 int pos=0;
 f[1]=0;
 _rep(i,2,n){
 while(pos&&s[i]!=s[pos+1])pos=f[pos];
 if(s[i]==s[pos+1])pos++;
 f[i]=pos;
 }
}
char s[MAXN],t[MAXN];
int n,m,dp1[MAXN],dp2[MAXN];
bool legal(int pos){
 for(int i=pos-m+1,j=1;j<=m;i++,j++){
 if(s[i]!=t[j]&&s[i]!='?')return false;
 }
 return true;
}
int main()
{
 scanf("%s%s",s+1,t+1);
 n=strlen(s+1),m=strlen(t+1);

Last
update:
2020/08/26
20:10

2020-2021:teams:legal_string:jxm2001:
字符串_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_1&rev=1598443817

https://wiki.cvbbacm.com/ Printed on 2026/01/23 22:05

 get_f(t,m);
 _rep(i,1,n){
 dp1[i]=dp1[i-1];
 if(legal(i)){
 dp2[i]=dp1[i-m]+1;
 for(int j=f[m];j;j=f[j])
 dp2[i]=max(dp2[i],dp2[i-m+j]+1);
 dp1[i]=max(dp1[i],dp2[i]);
 }
 }
 enter(dp1[n]);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_1&rev=1598443817

Last update: 2020/08/26 20:10

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_1&rev=1598443817

	字符串 1
	KMP 算法
	算法简介
	算法实现
	应用
	循环串
	前缀统计
	不同子串统计

	算法练习
	习题一
	题意
	题解

	习题二
	题意
	题解

