
2026/01/14 05:40 1/14 字符串 2

CVBB ACM Team - https://wiki.cvbbacm.com/

字符串 2

AC 自动机

算法简介

一种用于多模式串匹配的自动机，可以近似看成 Trie 树上的 KMP 算法。

算法例题

例题一

洛谷p5357

题意

给你一个文本串 S 和 n 个模式串 T_i，求每个模式串 T_i 在 S 中出现的次数。

题解

建立 AC 自动机后记录每个节点的访问次数，最后拓扑或建立 fail 树统计答案。时间
复杂度 $O(|S|+\sum_{i=1}^n |T_i|)$。

const int MAXN=2e6+5,MAXS=2e5+5;
int idx[MAXN];
struct AC{
 int ch[MAXS][26],val[MAXS],fail[MAXS],cnt[MAXS],deg[MAXS],sz,tot;
 int ans[MAXS];
 int insert(char *s){
 int len=strlen(s),pos=0;
 _for(i,0,len){
 int c=s[i]-'a';
 if(!ch[pos][c]){
 ch[pos][c]=++sz;
 val[sz]=fail[sz]=0;
 mem(ch[sz],0);
 }
 pos=ch[pos][c];
 }
 if(!val[pos])return val[pos]=++tot;
 else return val[pos];
 }
 void getFail(){

https://www.luogu.com.cn/problem/P5357
https://www.luogu.com.cn/problem/P5357

Last
update:
2020/08/30
10:59

2020-2021:teams:legal_string:jxm2001:
字符串_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:40

 queue<int> q;
 _for(i,0,26){
 if(ch[0][i])
 q.push(ch[0][i]);
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 _for(i,0,26){
 if(ch[u][i]){
 deg[ch[fail[u]][i]]++;
 fail[ch[u][i]]=ch[fail[u]][i];
 q.push(ch[u][i]);
 }
 else ch[u][i]=ch[fail[u]][i];
 }
 }
 }
 void topu(){
 queue<int> q;
 _rep(i,1,sz){
 if(!deg[i]&&fail[i])
 q.push(i);
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 if(fail[u]){
 cnt[fail[u]]+=cnt[u];
 deg[fail[u]]--;
 if(!deg[fail[u]])
 q.push(fail[u]);
 }
 }
 }
 void query(char *s){
 int len=strlen(s),pos=0;
 _for(i,0,len){
 pos=ch[pos][s[i]-'a'];
 cnt[pos]++;
 }
 topu();
 _rep(i,1,sz){
 if(val[i])
 ans[val[i]]=cnt[i];
 }
 }
}solver;
char buf[MAXN];
int main()
{
 int n=read_int();

2026/01/14 05:40 3/14 字符串 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 _rep(i,1,n){
 scanf("%s",buf);
 idx[i]=solver.insert(buf);
 }
 solver.getFail();
 scanf("%s",buf);
 solver.query(buf);
 _rep(i,1,n)
 enter(solver.ans[idx[i]]);
 return 0;
}

例题二

洛谷p2444

题意

给定 n 个 01 串 S_i，问是否存在无限长串不含任何 S_i。

题解

建立 AC 自动机标记每个 S_i 的终止节点，然后建 fail 树，显然所有终止节点在
fail 树中的子树节点均不能访问，于是将其标记。

最后 dfs 遍历树，在不经过所有标记节点的前提下判定是否存在可以到达的环。注意为保证时间
复杂度 dfs 遍历后也需要标记节点。

总时间复杂度 $O(\sum_{i=1}^n |S_i|)$。

const int MAXS=3e4+5;
struct AC{
 struct Edge{
 int to,next;
 }edge[MAXS<<1];
 int head[MAXS],edge_cnt;
 int ch[MAXS][2],val[MAXS],fail[MAXS],sz;
 void AddEdge(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
 }
 void insert(char *s){
 int len=strlen(s),pos=0;
 _for(i,0,len){
 int c=s[i]-'0';
 if(!ch[pos][c]){
 ch[pos][c]=++sz;

https://www.luogu.com.cn/problem/P2444
https://www.luogu.com.cn/problem/P2444

Last
update:
2020/08/30
10:59

2020-2021:teams:legal_string:jxm2001:
字符串_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:40

 val[sz]=fail[sz]=0;
 mem(ch[sz],0);
 }
 pos=ch[pos][c];
 }
 val[pos]=1;
 }
 void getFail(){
 queue<int> q;
 _for(i,0,2){
 if(ch[0][i])
 q.push(ch[0][i]);
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 _for(i,0,2){
 if(ch[u][i]){
 fail[ch[u][i]]=ch[fail[u]][i];
 q.push(ch[u][i]);
 }
 else ch[u][i]=ch[fail[u]][i];
 }
 }
 _rep(i,1,sz)
 AddEdge(fail[i],i);
 }
 void dfs(int u,int flag){
 val[u]=flag;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 dfs(v,flag|val[v]);
 }
 }
 bool dfs2(int u){
 val[u]=-1;
 _for(i,0,2){
 if(val[ch[u][i]]==-1)
 return true;
 else if(!val[ch[u][i]]&&dfs2(ch[u][i]))
 return true;
 }
 val[u]=1;
 return false;
 }
 bool query(){
 dfs(0,0);
 return dfs2(0);
 }
}solver;
char buf[MAXS];

2026/01/14 05:40 5/14 字符串 2

CVBB ACM Team - https://wiki.cvbbacm.com/

int main()
{
 int n=read_int();
 _for(i,0,n){
 scanf("%s",buf);
 solver.insert(buf);
 }
 solver.getFail();
 if(solver.query())
 puts("TAK");
 else
 puts("NIE");
 return 0;
}

例题三

洛谷p2414

题意

给定一个字符串 S，只包含小写字母和 B,P 两个大写字母。

当前初始串 T 为空串，扫描 S，如果 s_i 为小写字母，则在 T 末尾加入该字母。

如果 s_i 为 B，则删除 T 末尾的一个字母。如果 s_i 为 P，则打印 T 。

接下来 q 个询问，每次询问第 i 次打印的字符串在第 j 次打印的字符串中出现的次数。

题解

考虑建 fail 树，记第 i 次打印的字符串的结尾结点为 p_i，第 j 次打印的字符串的结尾结
点为 p_j。

于是该次询问的答案为 Trie 树中根节点到 p_j 的路径与 p_i 在 fail 树中的子树的
交集的结点个数。

考虑将所有询问离线到 Trie，然后 dfs 遍历 Trie 树同时处理询问。

可以利用 fail 树上的 dfs 序以及树状数组维护子树，遍历过程中回溯维护链的性质。

时间复杂度 $O((|S|+q)\log |S|)$。

const int MAXN=1e5+5;
int idx[MAXN],string_cnt;
struct Edge{
 int to,next;

https://www.luogu.com.cn/problem/P2414
https://www.luogu.com.cn/problem/P2414

Last
update:
2020/08/30
10:59

2020-2021:teams:legal_string:jxm2001:
字符串_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:40

}edge[MAXN];
int head[MAXN],edge_cnt,dfs_t,L[MAXN],R[MAXN];
void AddEdge(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
void dfs(int u){
 L[u]=++dfs_t;
 for(int i=head[u];i;i=edge[i].next)
 dfs(edge[i].to);
 R[u]=dfs_t;
}
#define lowbit(x) x&(-x)
struct BIT{
 int c[MAXN];
 void add(int pos,int v){
 while(pos<=dfs_t){
 c[pos]+=v;
 pos+=lowbit(pos);
 }
 }
 int query(int pos){
 int ans=0;
 while(pos){
 ans+=c[pos];
 pos-=lowbit(pos);
 }
 return ans;
 }
}tree;
int ans[MAXN];
vector<pair<int,int> >opt[MAXN];
struct AC{
 int ch[MAXN][26],ch2[MAXN][26],p[MAXN],val[MAXN],fail[MAXN],sz;
 void insert(char *s){
 int len=strlen(s),pos=0;
 _for(i,0,len){
 if(islower(s[i])){
 int c=s[i]-'a';
 if(!ch[pos][c]){
 ch[pos][c]=ch2[pos][c]=++sz;
 p[sz]=pos;
 }
 pos=ch[pos][c];
 }
 else if(s[i]=='B')
 pos=p[pos];
 else{
 val[pos]=1;
 idx[++string_cnt]=pos;

2026/01/14 05:40 7/14 字符串 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 }
 }
 void getFail(){
 queue<int> q;
 _for(i,0,26){
 if(ch[0][i])
 q.push(ch[0][i]);
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 _for(i,0,26){
 if(ch[u][i]){
 fail[ch[u][i]]=ch[fail[u]][i];
 q.push(ch[u][i]);
 }
 else ch[u][i]=ch[fail[u]][i];
 }
 }
 _rep(i,1,sz)
 AddEdge(fail[i],i);
 }
 void dfs(int u){
 tree.add(L[u],1);
 _for(i,0,opt[u].size()){
 pair<int,int> t=opt[u][i];
 ans[t.first]=tree.query(R[t.second])-tree.query(L[t.second]-1);
 }
 _for(i,0,26){
 if(ch2[u][i])
 dfs(ch2[u][i]);
 }
 tree.add(L[u],-1);
 }
}solver;
char buf[MAXN];
int main()
{
 scanf("%s",buf);
 solver.insert(buf);
 solver.getFail();
 dfs(0);
 int q=read_int(),a,b;
 _rep(i,1,q){
 a=read_int(),b=read_int();
 opt[idx[b]].push_back(make_pair(i,idx[a]));
 }
 solver.dfs(0);
 _rep(i,1,q)
 enter(ans[i]);
 return 0;

Last
update:
2020/08/30
10:59

2020-2021:teams:legal_string:jxm2001:
字符串_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:40

}

例题四

洛谷p4052

题意

给定 n 个模式串 S_i，问有多少个长度为 m 的文本串至少包含一个模式串。(模式串、文本串只含
大写字母)

题解

考虑计算出不含任何模式串的文本串，再用总数减去该值即可得到答案。

接下来标记所有模式串终止位置在 fail 树上的子节点，显然转移时不能到达标记结点。

最后设 $\text{dp}(i,j)$ 表示当前位于结点 i 且长度为 j 的方案数，暴力转移即可。总时空间复杂度
$O(m\sum_{i=1}^n |S_i|)$。

const int MAXL=105,MAXS=6005,Mod=1e4+7;
int quick_pow(int a,int b){
 int ans=1;
 while(b){
 if(b&1)ans=ans*a%Mod;
 a=a*a%Mod;
 b>>=1;
 }
 return ans;
}
struct AC{
 int ch[MAXS][26],val[MAXS],fail[MAXS],sz;
 int dp[MAXS][MAXL];
 void insert(char *s){
 int len=strlen(s),pos=0;
 _for(i,0,len){
 int c=s[i]-'A';
 if(!ch[pos][c])
 ch[pos][c]=++sz;
 pos=ch[pos][c];
 }
 val[pos]=1;
 }
 void getFail(){
 queue<int> q;
 _for(i,0,26){

https://www.luogu.com.cn/problem/P4052
https://www.luogu.com.cn/problem/P4052

2026/01/14 05:40 9/14 字符串 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(ch[0][i])
 q.push(ch[0][i]);
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 _for(i,0,26){
 if(ch[u][i]){
 fail[ch[u][i]]=ch[fail[u]][i];
 val[ch[u][i]]|=val[ch[fail[u]][i]];
 q.push(ch[u][i]);
 }
 else ch[u][i]=ch[fail[u]][i];
 }
 }
 }
 int query(int n){
 dp[0][0]=1;
 _for(i,0,n){
 _rep(j,0,sz){
 _for(k,0,26){
 if(val[ch[j][k]])continue;
 dp[ch[j][k]][i+1]+=dp[j][i];
 dp[ch[j][k]][i+1]%=Mod;
 }
 }
 }
 int ans=0;
 _rep(i,0,sz)ans=(ans+dp[i][n])%Mod;
 return ans;
 }
}solver;
char buf[MAXL];
int main()
{
 int n=read_int(),m=read_int();
 _rep(i,1,n){
 scanf("%s",buf);
 solver.insert(buf);
 }
 solver.getFail();
 int del=solver.query(m);
 enter((quick_pow(26,m)-del+Mod)%Mod);
 return 0;
}

例题五

NC210775

https://ac.nowcoder.com/acm/contest/7009/F

Last
update:
2020/08/30
10:59

2020-2021:teams:legal_string:jxm2001:
字符串_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:40

题意

给定 n 个模式串，每个字符串有一个权值 v。要求构造一个长度为 L 的字符串，使得其包含的模式
串权值和最大。(包含多个相同模式串结果将累加)

题解

标记所有模式串终止位置在 fail 树上的子节点，子树可以累加父节点的权值。

最后设 $\text{dp}(i,j)$ 表示当前位于结点 i 且长度为 j 的最大答案，暴力转移。总时空间复杂度
$O(L\sum_{i=1}^n |S_i|)$。

const int MAXL=1e3+5,MAXS=2005,Inf=1e9;
struct AC{
 int ch[MAXS][26],val[MAXS],fail[MAXS],sz;
 int dp[MAXS][MAXL];
 void insert(char *s,int v){
 int len=strlen(s),pos=0;
 _for(i,0,len){
 int c=s[i]-'a';
 if(!ch[pos][c])
 ch[pos][c]=++sz;
 pos=ch[pos][c];
 }
 val[pos]+=v;
 }
 void getFail(){
 queue<int> q;
 _for(i,0,26){
 if(ch[0][i])
 q.push(ch[0][i]);
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 val[u]+=val[fail[u]];
 _for(i,0,26){
 if(ch[u][i]){
 fail[ch[u][i]]=ch[fail[u]][i];
 q.push(ch[u][i]);
 }
 else ch[u][i]=ch[fail[u]][i];
 }
 }
 }
 int query(int n){
 _rep(i,0,n)_rep(j,0,sz)dp[j][i]=-Inf;
 dp[0][0]=0;
 _for(i,0,n){

2026/01/14 05:40 11/14 字符串 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 _rep(j,0,sz){
 if(dp[j][i]==-Inf)continue;
 _for(k,0,26)
dp[ch[j][k]][i+1]=max(dp[ch[j][k]][i+1],dp[j][i]+val[ch[j][k]]);
 }
 }
 int ans=-Inf;
 _rep(i,0,sz)
 ans=max(ans,dp[i][n]);
 return ans;
 }
}solver;
char buf[MAXS];
int main()
{
 int n,m;
 cin>>n>>m;
 _rep(i,1,n){
 scanf("%s",buf);
 int v;
 cin>>v;
 solver.insert(buf,v);
 }
 solver.getFail();
 enter(solver.query(m));
 return 0;
}

例题六

UVA11019

题意

给定一个 $n\times m$ 的二维文本串和一个 $x\times y$ 的二维模式串，问模式串在文本串中的出现次数。

题解

考虑将模式串按行拆分为 $t_1,t_2\cdots t_x$ 后插入 AC 自动机，同时进行编号(相同的字符串
共用一个编号)。

再将 $t_1,t_2\cdots t_x$ 的编号相连得到一个一维数组 b。

同时将文本串按行拆分为 $s_1,s_2\cdots s_n$ 后在 AC 自动机查询并记录匹配位置的模式串编
号，得到一个二维数组 a。

二维数组中元素 $a_{i,j}$ 的意义是 $s[i][j-y+1,j]$ 与模式串 $t_{a_{i,j}}$ 匹配。

于是对 a 的每列跑 KMP 算法记录 b 的出现数即可。时间复杂度 $O(nm+xy)$。

https://www.luogu.com.cn/problem/UVA11019

Last
update:
2020/08/30
10:59

2020-2021:teams:legal_string:jxm2001:
字符串_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:40

注意上述方法可以拓展到任意维字符串匹配。

const int MAXN=1e3+5,MAXS=1e4+5;
namespace KMP{
 int f[MAXN];
 int find(int *s1,int n,int *s2,int m){
 int pos=0,cnt=0;
 f[1]=0;
 _rep(i,2,m){
 while(pos&&s2[i]!=s2[pos+1])pos=f[pos];
 if(s2[i]==s2[pos+1])pos++;
 f[i]=pos;
 }
 pos=0;
 _rep(i,1,n){
 while(pos&&s1[i]!=s2[pos+1])pos=f[pos];
 if(s1[i]==s2[pos+1])pos++;
 if(pos==m){
 cnt++;
 pos=f[pos];
 }
 }
 return cnt;
 }
}
struct AC{
 int ch[MAXS][26],val[MAXS],fail[MAXS],sz,cnt;
 void clear(){
 sz=cnt=0;
 mem(ch[0],0);
 }
 int insert(char *s){
 int len=strlen(s),pos=0;
 _for(i,0,len){
 int c=s[i]-'a';
 if(!ch[pos][c]){
 ch[pos][c]=++sz;
 mem(ch[sz],0);
 val[sz]=fail[sz]=0;
 }
 pos=ch[pos][c];
 }
 if(val[pos])return val[pos];
 return val[pos]=++cnt;
 }
 void getFail(){
 queue<int> q;
 _for(i,0,26){
 if(ch[0][i])

2026/01/14 05:40 13/14 字符串 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 q.push(ch[0][i]);
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 val[u]+=val[fail[u]];
 _for(i,0,26){
 if(ch[u][i]){
 fail[ch[u][i]]=ch[fail[u]][i];
 q.push(ch[u][i]);
 }
 else ch[u][i]=ch[fail[u]][i];
 }
 }
 }
 void query(char *s,int *ans,int n){
 int pos=0;
 _for(i,0,n){
 pos=ch[pos][s[i]-'a'];
 ans[i]=val[pos];
 }
 }
}solver;
char s1[MAXN][MAXN],s2[MAXN];
int a[MAXN][MAXN],b[MAXN],c[MAXN];
int main()
{
 int T=read_int();
 while(T--){
 solver.clear();
 int n=read_int(),m=read_int(),ans=0;
 _rep(i,1,n)scanf("%s",s1[i]);
 int x=read_int(),y=read_int();
 _rep(i,1,x){
 scanf("%s",s2);
 b[i]=solver.insert(s2);
 }
 solver.getFail();
 _rep(i,1,n)
 solver.query(s1[i],a[i],m);
 _for(i,y-1,m){
 _rep(j,1,n)c[j]=a[j][i];
 ans+=KMP::find(c,n,b,x);
 }
 enter(ans);
 }
 return 0;
}

Last
update:
2020/08/30
10:59

2020-2021:teams:legal_string:jxm2001:
字符串_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

https://wiki.cvbbacm.com/ Printed on 2026/01/14 05:40

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

Last update: 2020/08/30 10:59

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_2&rev=1598756383

	字符串 2
	AC 自动机
	算法简介
	算法例题
	例题一
	题意
	题解

	例题二
	题意
	题解

	例题三
	题意
	题解

	例题四
	题意
	题解

	例题五
	题意
	题解

	例题六
	题意
	题解

