
2026/01/14 02:20 1/8 字符串 3

CVBB ACM Team - https://wiki.cvbbacm.com/

字符串 3

后缀数组

算法简介

后缀树的一种替代品，可以用于解决各种字符串问题。

算法实现

后缀数组的核心为 sa 数组，rk 数组以及 height_i 数组。

其中 sa_i 表示排名为 i 的后缀的起始位置，rk_i 表示起始位置为 i 的后缀的排名。

sa 数组可以通过倍增法和基数排序求解，时间复杂度 $O(n\log n)$，根据 $rk_{sa_i}=i$ 可以 $O(n)$
求解 rk 数组。

height_i 表示 $\text{LCP}(S[sa_i,n],S[sa_{i-1},n])$ 的长度，给出引理

$$\text{height}_{rk_i}\ge \text{height}_{rk_{i-1}}-1$$

显然
$\text{height}_{rk_i}=\text{LCA}(S[i,n],S[sa_{rk_i-1},n]),\text{height}_{rk_{i-1}}=\text{LCP}(S[i-1,
n],S[sa_{rk_{i-1}-1},n])$。

假设 $S[i-1,i-1+k]=S[j,j+k]$，显然有 $S[i,i-1+k]=S[j+1,j+k]$，于是上述引理得证。

根据引理，可以 $O(n)$ 求解 height_i 数组。

同时有引理

$$\text{LCP}(S[sa_i,n],S[sa_j,n])=\min_{i\lt k\le j} \text{height}_k$$

可以感性理解为 k 指针从 $i+1$ 滑到 j，期间 LCP 不增且总是取最小，于是上述结论成立。

根据该结论建立 ST 表即可 $O(1)$ 求解每个后缀 LCP 的询问。

接下来考虑任意两个子串 $S_1=S[a,b],S_2=S[c,d]$ 的大小。

若 $\text{LCP}(S[a,n],S[b,n])\ge \min(S_1,S_2)$，显然只需要比较 $|S_1|,|S_2|$；否则比较 rk_a,rk_c
即可。

namespace SA{
 int sa[MAXN],rk[MAXN],height[MAXN],x[MAXN],y[MAXN],c[MAXN];
 void get_sa(char *s,int n,int m){//s下标从1开始
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]=s[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[i]]--]=i;

Last
update:
2020/08/30
21:51

2020-2021:teams:legal_string:jxm2001:
字符串_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_3&rev=1598795492

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:20

 for(int k=1;k<n;k<<=1){
 int pos=0;
 _rep(i,n-k+1,n)y[++pos]=i;
 _rep(i,1,n)if(sa[i]>k)y[++pos]=sa[i]-k;
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
 swap(x,y);
 pos=0,y[n+1]=0;
_rep(i,1,n)x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?pos:++p
os;
 if(pos==n)break;
 m=pos;
 }
 _rep(i,1,n)rk[sa[i]]=i;
 }
 void get_height(char *s,int n){//必须先得到sa数组和rk数组
 for(int i=1,k=0;i<=n;i++){
 if(k)k--;
 while(s[i+k]==s[sa[rk[i]-1]+k])k++;
 height[rk[i]]=k;
 }
 }
}

算法例题

例题一

洛谷p4051

题意

给定字符串 $S=s_1s_2\cdots s_n$，将其视为一个环，任意选择环的起点，可以得到 n 个新字符串
$T_k=s_ks_{k+1}\cdots s_{k-1}$。

询问将所有 T_i 按字典序从小到大排序后依次取每个 T_i 的最后一个字母构成的字符串。

题解

考虑将 S 倍长为 SS，求 SS 每个后缀的排名，即可得到每个字符串 T_i 的排名。

关于正确性，考虑字符串 abc，于是 T_2 代表的字符串 bca 变为 $bcabc$，实际上这相当于 T_2
再与 T_2 的前缀拼接而成，不影响排序结果。

https://www.luogu.com.cn/problem/P4051
https://www.luogu.com.cn/problem/P4051

2026/01/14 02:20 3/8 字符串 3

CVBB ACM Team - https://wiki.cvbbacm.com/

时间复杂度 $O(n\log n)$。

const int MAXN=2e5+5;
namespace SA{
 int sa[MAXN],x[MAXN],y[MAXN],c[MAXN];
 void get_sa(char *s,int n,int m){
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]=s[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[i]]--]=i;
 for(int k=1;k<n;k<<=1){
 int pos=0;
 _rep(i,n-k+1,n)y[++pos]=i;
 _rep(i,1,n)if(sa[i]>k)y[++pos]=sa[i]-k;
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
 swap(x,y);
 pos=0,y[n+1]=0;
_rep(i,1,n)x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?pos:++
pos;
 if(pos==n)break;
 m=pos;
 }
 }
}
char buf[MAXN];
int main()
{
 scanf("%s",buf+1);
 int n=strlen(buf+1);
 _rep(i,1,n)buf[i+n]=buf[i];
 buf[2*n+1]='\0';
 SA::get_sa(buf,n<<1,'z');
 _rep(i,1,2*n){
 if(SA::sa[i]<=n)
 putchar(buf[SA::sa[i]+n-1]);
 }
 return 0;
}

例题二

洛谷p2870

题意

https://www.luogu.com.cn/problem/P2870
https://www.luogu.com.cn/problem/P2870

Last
update:
2020/08/30
21:51

2020-2021:teams:legal_string:jxm2001:
字符串_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_3&rev=1598795492

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:20

给定一个字符串 S 和一个空串 T，每个可以选择 S 的首字符或末字符，将其删去后加入到 T 末尾。

问所有可能的 T 中字典序最小的。

题解

考虑贪心，假设现在字符串为 $s_{L}s_{L+1}\cdots s_{R-1}s_R$，显然选取 s_L,s_R 中字典序最小的
最优。

如果 $s_L=s_R$，接下来考虑选择 s_{L+1},s_{R-1} 中字典序最小的，直到比较到端点为止。

上述操作等价于比较 $S[L,n]$ 和 $S[1,R]$ 的字典序。考虑构造字符串 $s_1s_2\cdots
s_n+\text{\0}+s_n\cdots s_2s_1$。

于是可以通过后缀数组得到 $S[L,n]$ 和 $S[1,R]$ 的排名，时间复杂度 $O(n\log n)$。

const int MAXN=1e6+5;
namespace SA{
 int sa[MAXN],rk[MAXN],x[MAXN],y[MAXN],c[MAXN];
 void get_sa(char *s,int n,int m){
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]=s[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[i]]--]=i;
 for(int k=1;k<n;k<<=1){
 int pos=0;
 _rep(i,n-k+1,n)y[++pos]=i;
 _rep(i,1,n)if(sa[i]>k)y[++pos]=sa[i]-k;
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
 swap(x,y);
 pos=0,y[n+1]=0;
_rep(i,1,n)x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?pos:++
pos;
 if(pos==n)break;
 m=pos;
 }
 _rep(i,1,n)rk[sa[i]]=i;
 }
}
char buf[MAXN];
int main()
{
 int n=read_int(),len=2*n+1;
 _rep(i,1,n)buf[i]=buf[len+1-i]=get_char();
 buf[n+1]=0;
 SA::get_sa(buf,len,'Z');

2026/01/14 02:20 5/8 字符串 3

CVBB ACM Team - https://wiki.cvbbacm.com/

 int L=1,R=n,cnt=0;
 while(L<=R){
 if(SA::rk[L]<SA::rk[len+1-R])
 putchar(buf[L++]);
 else
 putchar(buf[R--]);
 if((++cnt)%80==0)putchar('\n');
 }
 return 0;
}

例题三

洛谷p2408

题意

给定一个字符串 S，求本质不同的子串个数。

题解

子串相当于某个后缀的前缀，于是考虑依次枚举 sa_i 代表的后缀，加上新增的本质不同的前缀。

根据 LCP 性质不难得到属于 sa_i 后缀的新增的本质不同于 $sa_1\cdots sa_{i-1}$ 的所有前缀的子串
数为 $n+1-sa_i-\text{height}_i$。

于是最终答案为 $\sum_{i=1}^n n+1-sa_i-\text{height}_i=\frac {n(n+1)}2-
\sum_{i=1}^n\text{height}_i=\frac {n(n+1)}2-\sum_{i=2}^n\text{height}_i$。

const int MAXN=1e5+5;
namespace SA{
 int sa[MAXN],rk[MAXN],height[MAXN],x[MAXN],y[MAXN],c[MAXN];
 void get_sa(char *s,int n,int m){
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]=s[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[i]]--]=i;
 for(int k=1;k<n;k<<=1){
 int pos=0;
 _rep(i,n-k+1,n)y[++pos]=i;
 _rep(i,1,n)if(sa[i]>k)y[++pos]=sa[i]-k;
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
 swap(x,y);
 pos=0,y[n+1]=0;

https://www.luogu.com.cn/problem/P2408
https://www.luogu.com.cn/problem/P2408

Last
update:
2020/08/30
21:51

2020-2021:teams:legal_string:jxm2001:
字符串_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_3&rev=1598795492

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:20

_rep(i,1,n)x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?pos:++
pos;
 if(pos==n)break;
 m=pos;
 }
 _rep(i,1,n)rk[sa[i]]=i;
 }
 void get_height(char *s,int n){
 for(int i=1,k=0;i<=n;i++){
 if(k)k--;
 while(s[i+k]==s[sa[rk[i]-1]+k])k++;
 height[rk[i]]=k;
 }
 }
}
char buf[MAXN];
int main()
{
 int n=read_int();
 scanf("%s",buf+1);
 SA::get_sa(buf,n,'z');
 SA::get_height(buf,n);
 LL ans=1LL*n*(n+1)/2;
 _rep(i,2,n)ans-=SA::height[i];
 enter(ans);
 return 0;
}

例题四

洛谷p2852

题意

给定一个字符串 S，求至少出现 k 次的最长子串的长度。

题解

考虑至少出现 k 次的子串，他一定是至少连续 $k-1$ 个 height 数组代表的 k 个后缀的公共
前缀。

于是求出 height 数组后单调队列维护每个长度为 $k-1$ 的连续区间的 height 数组的
最小值的最大值即可。

时间复杂度 $O(n\log n)$。

https://www.luogu.com.cn/problem/P2852
https://www.luogu.com.cn/problem/P2852

2026/01/14 02:20 7/8 字符串 3

CVBB ACM Team - https://wiki.cvbbacm.com/

const int MAXN=2e4+5;
namespace SA{
 int sa[MAXN],rk[MAXN],height[MAXN],x[MAXN],y[MAXN],c[MAXN];
 void get_sa(int *s,int n,int m){
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]=s[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[i]]--]=i;
 for(int k=1;k<n;k<<=1){
 int pos=0;
 _rep(i,n-k+1,n)y[++pos]=i;
 _rep(i,1,n)if(sa[i]>k)y[++pos]=sa[i]-k;
 _rep(i,0,m)c[i]=0;
 _rep(i,1,n)c[x[i]]++;
 _rep(i,1,m)c[i]+=c[i-1];
 for(int i=n;i;i--)sa[c[x[y[i]]]--]=y[i],y[i]=0;
 swap(x,y);
 pos=0,y[n+1]=0;
_rep(i,1,n)x[sa[i]]=(y[sa[i]]==y[sa[i-1]]&&y[sa[i]+k]==y[sa[i-1]+k])?pos:++
pos;
 if(pos==n)break;
 m=pos;
 }
 _rep(i,1,n)rk[sa[i]]=i;
 }
 void get_height(int *s,int n){
 for(int i=1,k=0;i<=n;i++){
 if(k)k--;
 while(s[i+k]==s[sa[rk[i]-1]+k])k++;
 height[rk[i]]=k;
 }
 }
}
int a[MAXN],b[MAXN],q[MAXN];
int main()
{
 int n=read_int(),k=read_int()-1;
 _rep(i,1,n)a[i]=b[i]=read_int();
 sort(b+1,b+n+1);
 int m=unique(b+1,b+n+1)-b;
 _rep(i,1,n)a[i]=lower_bound(b+1,b+m,a[i])-b;
 SA::get_sa(a,n,m);
 SA::get_height(a,n);
 int ans=0,tail=1,head=0;
 _rep(i,1,n){
 while(tail<=head&&i-q[tail]>=k)tail++;
 while(tail<=head&&SA::height[i]<=SA::height[q[head]])head--;
 q[++head]=i;
 if(i>=k)ans=max(ans,SA::height[q[tail]]);
 }
 enter(ans);

Last
update:
2020/08/30
21:51

2020-2021:teams:legal_string:jxm2001:
字符串_3

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_3&rev=1598795492

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:20

 return 0;
}

例题五

洛谷p2178

题意

给定一个字符串 S 和序列 v，字符串对 $(S[a,b],S[c,d])$ 的权值为 v_av_b。

对 $0\le i\lt n$，询问满足 $\text{LCP}(S[a,b],S[c,d])\ge i$ 的所有字符串对的个数和最大权值。

题解

将 height_i 视为连接 sa_i 和 sa_{i-1} 的一条边。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_3&rev=1598795492

Last update: 2020/08/30 21:51

https://www.luogu.com.cn/problem/P2178
https://www.luogu.com.cn/problem/P2178
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E5%AD%97%E7%AC%A6%E4%B8%B2_3&rev=1598795492

	字符串 3
	后缀数组
	算法简介
	算法实现
	算法例题
	例题一
	题意
	题解

	例题二
	题意
	题解

	例题三
	题意
	题解

	例题四
	题意
	题解

	例题五
	题意
	题解

