
2026/01/14 02:15 1/6 支配树

CVBB ACM Team - https://wiki.cvbbacm.com/

支配树

算法简介

给定一个有向图，定义一个超级源点，连向所有入度为 0 的点。

对于点对 (u,v)，如果删除 u 将导致超级源点不可以到达 v，则称 u 支配 v。

易知支配关系构成树，其中每个子树的根节点支配子树的所有结点。称这样的树为支配树。

算法模板

有向无环图

洛谷p2597

对每个结点 v，设原图中有 $u_1,u_2,u_3\cdots u_k\to v$，易知 v 在支配树上的父结点为
$u_1,u_2\cdots u_k$ 在支配树上的 LCA。

考虑对原图的点进行拓扑，边拓扑边建立支配树，动态维护每个点 u 的当前父结点 $p(u)$。

每次拓扑到 u 时直接在支配树上连边 $p(u)\to u$，然后动态更新原图中 $u\to v$ 的每个 $p(v)\to
\text{LCA}(p(v),u)$。

注意 $p(u)$ 初值为 0 且 $\text{LCA}(p(u),0)=p(u)$。至于 LCA 可以考虑用倍增维护。时间复
杂度 $O(m\log n)$。

const int MAXN=1e5+5,MAXM=1e6+5,MAXV=18;
struct Edge{
 int to,next;
}edge[MAXM+MAXN];
int head1[MAXN],head2[MAXN],edge_cnt;
int deg[MAXN],f[MAXN],dep[MAXN],anc[MAXN][MAXV],lg2[MAXN];
void Insert1(int u,int v){
 edge[++edge_cnt]=Edge{v,head1[u]};
 head1[u]=edge_cnt;
 deg[v]++;
}
void Insert2(int u,int v){
 edge[++edge_cnt]=Edge{v,head2[u]};
 head2[u]=edge_cnt;
}
int LCA(int u,int v){
 if(dep[u]<dep[v])
 swap(u,v);
 while(dep[u]>dep[v])u=anc[u][lg2[dep[u]-dep[v]]];
 if(u==v)

https://www.luogu.com.cn/problem/P2597
https://www.luogu.com.cn/problem/P2597

Last
update:
2021/07/30
20:12

2020-2021:teams:legal_string:jxm2001:
支配树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%94%AF%E9%85%8D%E6%A0%91&rev=1627647145

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:15

 return u;
 for(int i=MAXV-1;i>=0;i--){
 if(anc[u][i]!=anc[v][i])
 u=anc[u][i],v=anc[v][i];
 }
 return anc[u][0];
}
int build(int n){
 lg2[1]=0;
 _for(i,2,MAXN)lg2[i]=lg2[i>>1]+1;
 int rt=n+1;
 queue<int> q;
 _rep(i,1,n){
 if(deg[i]==0){
 f[i]=rt;
 q.push(i);
 }
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 dep[u]=dep[f[u]]+1;
 Insert2(f[u],u);
 anc[u][0]=f[u];
 for(int i=1;i<MAXV;i++)
 anc[u][i]=anc[anc[u][i-1]][i-1];
 for(int i=head1[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(f[v]==0)
 f[v]=u;
 else
 f[v]=LCA(u,f[v]);
 deg[v]--;
 if(deg[v]==0)
 q.push(v);
 }
 }
 return rt;
}
int sz[MAXN];
void dfs(int u){
 sz[u]=1;
 for(int i=head2[u];i;i=edge[i].next){
 int v=edge[i].to;
 dfs(v);
 sz[u]+=sz[v];
 }
}
int main(){
 int n=read_int();
 _rep(u,1,n){

2026/01/14 02:15 3/6 支配树

CVBB ACM Team - https://wiki.cvbbacm.com/

 int v=read_int();
 while(v){
 Insert1(v,u);
 v=read_int();
 }
 }
 int rt=build(n);
 dfs(rt);
 _rep(i,1,n)
 enter(sz[i]-1);
 return 0;
}

一般有向图

挖坑待填

算法例题

例题一

gym 101741 L

题意

给定一个无向连通图，定义源点为 1 号点。对每条边，询问删除该边会导致源点到多少个点的最短路改
变。

首先跑最短路，然后保留所有在最短路树上的边，同时规定每条边方向由距离近的点指向距离远的点，易
知构成有向无环图。

问题转化为求有向无环图的支配边。

对任意一个点，如果该点有至少两条入边，易知所有入边支配点集均为空，否则该边的支配点集等价于该
点的支配子树。

const int MAXN=2e5+5,MAXM=2e5+5,MAXV=22;
namespace Tree{
 struct Edge{
 int to,id,next;
 }edge[MAXN+MAXM];
 int head1[MAXN],head2[MAXN],edge_cnt;
 int deg[MAXN],f[MAXN],dep[MAXN],anc[MAXN][MAXV],lg2[MAXN];
 int deg0[MAXN];
 void Insert1(int u,int v,int id){
 edge[++edge_cnt]=Edge{v,id,head1[u]};
 head1[u]=edge_cnt;

http://codeforces.com/gym/101741/problem/L

Last
update:
2021/07/30
20:12

2020-2021:teams:legal_string:jxm2001:
支配树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%94%AF%E9%85%8D%E6%A0%91&rev=1627647145

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:15

 deg[v]++;
 deg0[v]++;
 }
 void Insert2(int u,int v){
 edge[++edge_cnt]=Edge{v,0,head2[u]};
 head2[u]=edge_cnt;
 }
 int LCA(int u,int v){
 if(dep[u]<dep[v])
 swap(u,v);
 while(dep[u]>dep[v])u=anc[u][lg2[dep[u]-dep[v]]];
 if(u==v)
 return u;
 for(int i=MAXV-1;i>=0;i--){
 if(anc[u][i]!=anc[v][i])
 u=anc[u][i],v=anc[v][i];
 }
 return anc[u][0];
 }
 int build(int n){
 lg2[1]=0;
 _for(i,2,MAXN)lg2[i]=lg2[i>>1]+1;
 int rt=n+1;
 queue<int> q;
 _rep(i,1,n){
 if(deg[i]==0){
 f[i]=rt;
 q.push(i);
 }
 }
 while(!q.empty()){
 int u=q.front();q.pop();
 dep[u]=dep[f[u]]+1;
 Insert2(f[u],u);
 anc[u][0]=f[u];
 for(int i=1;i<MAXV;i++)
 anc[u][i]=anc[anc[u][i-1]][i-1];
 for(int i=head1[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(f[v]==0)
 f[v]=u;
 else
 f[v]=LCA(u,f[v]);
 deg[v]--;
 if(deg[v]==0)
 q.push(v);
 }
 }
 return rt;
 }

2026/01/14 02:15 5/6 支配树

CVBB ACM Team - https://wiki.cvbbacm.com/

 int sz[MAXN],ans[MAXM];
 void dfs(int u){
 sz[u]=1;
 for(int i=head2[u];i;i=edge[i].next){
 int v=edge[i].to;
 dfs(v);
 sz[u]+=sz[v];
 }
 }
 void solve(int n,int m){
 int rt=build(n);
 dfs(rt);
 _rep(u,1,n){
 for(int i=head1[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(deg0[v]==1)
 ans[edge[i].id]=sz[v];
 }
 }
 _for(i,0,m)
 enter(ans[i]);
 }
}
struct Edge{
 int to,w,id,next;
}edge[MAXM<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w,int id){
 edge[++edge_cnt]=Edge{v,w,id,head[u]};
 head[u]=edge_cnt;
}
LL dis[MAXN];
bool vis[MAXN];
int main(){
 int n=read_int(),m=read_int();
 _for(i,0,m){
 int u=read_int(),v=read_int(),w=read_int();
 Insert(u,v,w,i);
 Insert(v,u,w,i);
 }
 priority_queue<pair<LL,int> >q;
 mem(dis,127);
 dis[1]=0;
 q.push(make_pair(-dis[1],1));
 while(!q.empty()){
 int u=q.top().second;
 q.pop();
 if(vis[u])continue;
 vis[u]=true;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;

Last
update:
2021/07/30
20:12

2020-2021:teams:legal_string:jxm2001:
支配树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%94%AF%E9%85%8D%E6%A0%91&rev=1627647145

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:15

 if(dis[v]>dis[u]+edge[i].w){
 dis[v]=dis[u]+edge[i].w;
 q.push(make_pair(-dis[v],v));
 }
 }
 }
 _rep(u,1,n){
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(dis[v]==dis[u]+edge[i].w)
 Tree::Insert1(u,v,edge[i].id);
 }
 }
 Tree::solve(n,m);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%94%AF%E9%85%8D%E6%A0%91&rev=1627647145

Last update: 2021/07/30 20:12

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%94%AF%E9%85%8D%E6%A0%91&rev=1627647145

	支配树
	算法简介
	算法模板
	有向无环图
	一般有向图

	算法例题
	例题一
	题意

