
2026/01/14 06:17 1/10 数据结构练习 1

CVBB ACM Team - https://wiki.cvbbacm.com/

数据结构练习 1

线段树合并/分裂

习题一

洛谷p2824

题意

给定由 $1\sim n$ 的排列构成的序列 A，要求支持以下下两种操作：

将 $A_{l\sim r}$ 按升序排列1.
将 $A_{l\sim r}$ 按降序排列2.

m 次操作后询问位置 p 上的数值。

题解

考虑初始时构造 n 棵权值线段树，每个线段树维护区间 $[i,i](1\le i\le n)$。

每次排序操作将所有代表区间含于 $[l,r]$ 的线段树合并，发现合并完成的同时也完成了排序。

但由于区间 $[l,b]$ 可能已经属于某个区间 $[a,b]$，所以需要线段树分裂将其分裂为 $[a,l-1],[l,b]$。

同样也需要将区间 $[c,d]$ 分裂为 $[c,r],[r+1,d]$。最后将 $[l,b]\cdots [c,r]$ 等区间合并即可，注意打标
记维护区间的升序/降序情况。

初始化时间复杂度 $O(n\log n)$，产生点数 $O(n\log n)$。每次分裂时间复杂度 $O(\log n)$，且增加
$O(\log n)$ 个点。

每次合并操作时间复杂度等于合并的点数，于是一定不会超过初始化和分裂生成的总点数。

对于查询操作，考虑单独将区间 $[p,p]$ 分裂出来然后 dfs 沿唯一路径到达叶子结点即可，时间
复杂度 $O(\log n)$。

考虑 ODT 维护区间，总时空间复杂度 $O((n+m)\log n)$。

const int MAXN=1e5+5,MAXM=60;
struct Node{
 int ch[2],cnt;
}node[MAXN*MAXM];
int root[MAXN],node_cnt;
void push_up(int
k){node[k].cnt=node[node[k].ch[0]].cnt+node[node[k].ch[1]].cnt;}
void update(int &k,int lef,int rig,int pos){

https://www.luogu.com.cn/problem/P2824
https://www.luogu.com.cn/problem/P2824
https://www.cnblogs.com/WAMonster/p/10181214.html

Last
update:
2020/09/09
12:49

2020-2021:teams:legal_string:jxm2001:
数据结构练习_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E7%BB%83%E4%B9%A0_1&rev=1599626998

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:17

 k=++node_cnt;
 node[k].cnt++;
 if(lef==rig)return;
 int mid=lef+rig>>1;
 if(mid>=pos)
 update(node[k].ch[0],lef,mid,pos);
 else
 update(node[k].ch[1],mid+1,rig,pos);
}
int query(int k,int lef,int rig){
 int mid=lef+rig>>1;
 if(lef==rig)return mid;
 if(node[k].ch[0])
 return query(node[k].ch[0],lef,mid);
 else
 return query(node[k].ch[1],mid+1,rig);
}
void Merge(int &k1,int k2,int lef,int rig){
 if(!k1||!k2) return k1|=k2,void();
 if(lef==rig) return node[k1].cnt+=node[k2].cnt,void();
 int mid=lef+rig>>1;
 Merge(node[k1].ch[0],node[k2].ch[0],lef,mid);
 Merge(node[k1].ch[1],node[k2].ch[1],mid+1,rig);
 push_up(k1);
}
void split(int &k1,int &k2,int k){
 if(node[k1].cnt==k)return;
 k2=++node_cnt;
 if(k<=node[node[k1].ch[0]].cnt){
 node[k2].ch[1]=node[k1].ch[1];
 node[k1].ch[1]=0;
 split(node[k1].ch[0],node[k2].ch[0],k);
 }
 else
 split(node[k1].ch[1],node[k2].ch[1],k-node[node[k1].ch[0]].cnt);
 push_up(k1);push_up(k2);
}
struct seg{
 int lef,rig,rev;
 bool operator < (const seg &b)const{
 return lef<b.lef;
 }
 seg(int lef,int rig,int rev):lef(lef),rig(rig),rev(rev){}
 seg(int pos){lef=pos;}
};
set<seg> s;
typedef set<seg>::iterator iter;
iter split2(int pos){
 iter it=s.lower_bound(seg(pos));
 if(it!=s.end()&&it->lef==pos)return it;

2026/01/14 06:17 3/10 数据结构练习 1

CVBB ACM Team - https://wiki.cvbbacm.com/

 --it;
 int lef=it->lef,rig=it->rig,rev=it->rev;
 if(rev){
 split(root[lef],root[pos],rig-pos+1);
 swap(root[lef],root[pos]);
 }
 else
 split(root[lef],root[pos],pos-lef);
 s.erase(it);s.insert(seg(lef,pos-1,rev));
 return s.insert(seg(pos,rig,rev)).first;
}
int main()
{
 int n=read_int(),m=read_int();
 _rep(i,1,n)update(root[i],1,n,read_int()),s.insert(seg(i,i,0));
 while(m--){
 int opt=read_int(),lef=read_int(),rig=read_int();
 iter r=split2(rig+1),l=split2(lef);
 for(iter it=++l;it!=r;++it)Merge(root[lef],root[it->lef],1,n);
 s.erase(--l,r);
 s.insert(seg(lef,rig,opt));
 }
 int p=read_int();
 split2(p+1);split2(p);
 enter(query(root[p],1,n));
 return 0;
}

习题二

洛谷p5298

题意

给定一棵以 1 为根的有根树，每个点有一个权值，且度数不超过 2。

若 i 为叶子结点，则 i 的权值等于 v，否则它的权值有 p 的概率为儿子结点中的较大值，$1-p$ 的
概率为儿子节点中的较小值。

假设 1 号节点有 m 中可能取值，V_i 为所有可能值中第 i 小的取值，D_i 为取到第 i 小的取值
的概率，询问

$$\sum_{i=1}^m iV_iD_i^2$$

数据保证所有叶子节点权值互异。

题解

https://www.luogu.com.cn/problem/P5298
https://www.luogu.com.cn/problem/P5298

Last
update:
2020/09/09
12:49

2020-2021:teams:legal_string:jxm2001:
数据结构练习_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E7%BB%83%E4%B9%A0_1&rev=1599626998

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:17

先对所有权值进行离散化，设 $D(i,j)$ 表示节点 i 取值为 j 的概率。

对树进行 dfs，如果该节点是叶子节点，直接可知该结点 D 数组在该点权值处为 1，其余处
为 0。

如果该节点只有一个子节点，则该节点可以直接继承子节点的 D 数组。

如果该节点有两个子节点，对取值 i，由于叶子节点取值互异，不难得到状态转移：

$$D(u,i)=\left(D(l,i)\left(p_i\sum_{j=1}^{i-1}D(r,j)+(1-
p_i)\sum_{j=i+1}^mD(r,j)\right)+D(r,i)\left(p_i\sum_{j=1}^{i-1}D(l,j)+(1-
p_i)\sum_{j=i+1}^mD(l,j)\right)\right)$$

考虑用权值线段树维护每个节点的 D 数组。对于叶子节点和只有一个子节点的节点，不难维护。

对于有两个子节点的节点和某个确定的取值 i，显然至多只有一个子节点满足该节点取值为 i 的概率不
为 0。

于是不可能出现被合并的两棵线段树拥有重复的叶子节点的情况。于是合并的终止条件一定某个线段树该
节点为空。

不妨设左节点的线段树非空，且当前线段树节点代表区间为 $[x,y]$，于是对 $i\in [x,y]$ 有

$$D(u,i)=D(l,i)\left(p_i\sum_{j=1}^{x-1}D(r,j)+(1-p_i)\sum_{j=y+1}^mD(r,j)\right)$$

考虑线段树合并过程中维护两棵线段树的区间前缀和 $[1,x-1]$ 和后缀和 $[y+1,m]$ 即可。

最后对 1 节点的线段树 dfs 即可得到答案。时空间复杂度 $O(n\log n)$。

const int MAXN=3e5+5,MAXM=60,Mod=998244353;
int quick_pow(int a,int b){
 int ans=1;
 while(b){
 if(b&1)ans=1LL*ans*a%Mod;
 a=1LL*a*a%Mod;
 b>>=1;
 }
 return ans;
}
const int inv=quick_pow(10000,Mod-2);
struct Node{
 int ch[2],s,lazy;
 void add_lazy(int v){
 s=1LL*s*v%Mod;
 lazy=1LL*lazy*v%Mod;
 }
}node[MAXN*MAXM];
int root[MAXN],node_cnt;
void push_down(int k){
 if(node[k].lazy!=1){
 node[node[k].ch[0]].add_lazy(node[k].lazy);
 node[node[k].ch[1]].add_lazy(node[k].lazy);

2026/01/14 06:17 5/10 数据结构练习 1

CVBB ACM Team - https://wiki.cvbbacm.com/

 node[k].lazy=1;
 }
}
void push_up(int
k){node[k].s=(node[node[k].ch[0]].s+node[node[k].ch[1]].s)%Mod;}
void update(int &k,int lef,int rig,int pos){
 k=++node_cnt;
 node[k].lazy=node[k].s=1;
 if(lef==rig)return;
 int mid=lef+rig>>1;
 if(mid>=pos)
 update(node[k].ch[0],lef,mid,pos);
 else
 update(node[k].ch[1],mid+1,rig,pos);
}
int n,temp_p,p[MAXN],m;
void Merge(int &k1,int k2,int lpre,int lsuf,int rpre,int rsuf){
 if(!k1&&!k2)return;
 else if(k1&&k2){
 push_down(k1);push_down(k2);
 int t1=node[node[k1].ch[0]].s,t2=node[node[k2].ch[0]].s;
Merge(node[k1].ch[0],node[k2].ch[0],lpre,(lsuf+node[node[k1].ch[1]].s)%Mod,
rpre,(rsuf+node[node[k2].ch[1]].s)%Mod);
Merge(node[k1].ch[1],node[k2].ch[1],(lpre+t1)%Mod,lsuf,(rpre+t2)%Mod,rsuf);
 push_up(k1);
 }
 else{
 if(k1)node[k1].add_lazy((1LL*rpre*temp_p+1LL*rsuf*(Mod+1-
temp_p))%Mod);
 else node[k1=k2].add_lazy((1LL*lpre*temp_p+1LL*lsuf*(Mod+1-
temp_p))%Mod);
 }
}
struct Node_2{
 int ch[2],v;
}node2[MAXN];
void dfs(int k){
 if(!node2[k].ch[0])
 update(root[k],1,m,node2[k].v);
 else if(!node2[k].ch[1]){
 dfs(node2[k].ch[0]);
 root[k]=root[node2[k].ch[0]];
 }
 else{
 dfs(node2[k].ch[0]);dfs(node2[k].ch[1]);
 temp_p=node2[k].v;
 root[k]=root[node2[k].ch[0]];
 Merge(root[k],root[node2[k].ch[1]],0,0,0,0);
 }
}
int dfs2(int k,int lef,int rig){

Last
update:
2020/09/09
12:49

2020-2021:teams:legal_string:jxm2001:
数据结构练习_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E7%BB%83%E4%B9%A0_1&rev=1599626998

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:17

 if(!k)return 0;
 push_down(k);
 int mid=lef+rig>>1;
 if(lef==rig)return 1LL*mid*p[mid]%Mod*node[k].s%Mod*node[k].s%Mod;
 return (dfs2(node[k].ch[0],lef,mid)+dfs2(node[k].ch[1],mid+1,rig))%Mod;
}
int main()
{
 n=read_int();
 _rep(i,1,n){
 int f=read_int();
 if(f){
 if(node2[f].ch[0])node2[f].ch[1]=i;
 else node2[f].ch[0]=i;
 }
 }
 _rep(i,1,n){
 node2[i].v=read_int();
 if(node2[i].ch[0])node2[i].v=1LL*node2[i].v*inv%Mod;
 else p[++m]=node2[i].v;
 }
 sort(p+1,p+m+1);
 m=unique(p+1,p+m+1)-p;
 _rep(i,1,n)if(!node2[i].ch[0])
 node2[i].v=lower_bound(p+1,p+m,node2[i].v)-p;
 dfs(1);
 enter(dfs2(1,1,m));
 return 0;
}

可持久化数据结构

习题一

洛谷p2633

题意

给定一棵点权树，每次询问某条路径上第 k 小的权值，强制在线。

题解

类比区间第 k 小查询，考虑差分，对每个结点建权值线段树维护该结点到根节点之间的所有结点的权值
集合。

对于路径询问操作跑 $u+v-\text{LCA}(u,v)-\text{fa}(\text{LCA}(u,v))$ 构成的线段树即可。

https://www.luogu.com.cn/problem/P2633
https://www.luogu.com.cn/problem/P2633

2026/01/14 06:17 7/10 数据结构练习 1

CVBB ACM Team - https://wiki.cvbbacm.com/

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <sstream>
#include <cstring>
#include <cctype>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <ctime>
#include <cassert>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline LL read_LL(){
 LL t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline char get_char(){
 char c=getchar();
 while(c==' '||c=='\n'||c=='\r')c=getchar();
 return c;
}
inline void write(LL x){
 register char c[21],len=0;
 if(!x)return putchar('0'),void();
 if(x<0)x=-x,putchar('-');
 while(x)c[++len]=x%10,x/=10;
 while(len)putchar(c[len--]+48);
}
inline void space(LL x){write(x),putchar(' ');}
inline void enter(LL x){write(x),putchar('\n');}
const int MAXN=1e5+5,MAXM=40;
struct Edge{
 int to,next;

Last
update:
2020/09/09
12:49

2020-2021:teams:legal_string:jxm2001:
数据结构练习_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E7%BB%83%E4%B9%A0_1&rev=1599626998

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:17

}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
namespace LCA{
 int d[MAXN],sz[MAXN],f[MAXN];
 int h_son[MAXN],mson[MAXN],p[MAXN];
 void dfs_1(int u,int fa,int depth){
 sz[u]=1;f[u]=fa;d[u]=depth;mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)
 continue;
 dfs_1(v,u,depth+1);
 sz[u]+=sz[v];
 if(sz[v]>mson[u])
 h_son[u]=v,mson[u]=sz[v];
 }
 }
 void dfs_2(int u,int top){
 p[u]=top;
 if(mson[u])dfs_2(h_son[u],top);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==f[u]||v==h_son[u])
 continue;
 dfs_2(v,v);
 }
 }
 void init(int root){dfs_1(root,0,0);dfs_2(root,root);}
 int query_lca(int u,int v){
 while(p[u]!=p[v]){
 if(d[p[u]]<d[p[v]])swap(u,v);
 u=f[p[u]];
 }
 return d[u]<d[v]?u:v;
 }
};
struct Node{
 int ch[2],val;
}node[MAXN*MAXM];
int node_cnt;
int nodecopy(int k){
 node[++node_cnt]=node[k];
 return node_cnt;
}
void update(int &k,int p,int lef,int rig,int pos){
 k=nodecopy(p);

2026/01/14 06:17 9/10 数据结构练习 1

CVBB ACM Team - https://wiki.cvbbacm.com/

 node[k].val++;
 if(lef==rig)
 return;
 int mid=lef+rig>>1;
 if(mid<pos)
 update(node[k].ch[1],node[p].ch[1],mid+1,rig,pos);
 else
 update(node[k].ch[0],node[p].ch[0],lef,mid,pos);
}
int query(int k1,int k2,int k3,int k4,int lef,int rig,int rk){
 int mid=lef+rig>>1;
 if(lef==rig)
 return mid;
 int
lc1=node[k1].ch[0],lc2=node[k2].ch[0],lc3=node[k3].ch[0],lc4=node[k4].ch[0]
;
 int lz=node[lc1].val+node[lc2].val-node[lc3].val-node[lc4].val;
 if(rk>lz)
 return
query(node[k1].ch[1],node[k2].ch[1],node[k3].ch[1],node[k4].ch[1],mid+1,rig
,rk-lz);
 else
 return
query(node[k1].ch[0],node[k2].ch[0],node[k3].ch[0],node[k4].ch[0],lef,mid,r
k);
}
int a[MAXN],b[MAXN],root[MAXN],n2;
void dfs(int u,int fa){
 update(root[u],root[fa],1,n2,a[u]);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)continue;
 dfs(v,u);
 }
}
int query2(int u,int v,int k){
 int lca=LCA::query_lca(u,v);
 return query(root[u],root[v],root[lca],root[LCA::f[lca]],1,n2,k);
}
int main()
{
 int n=read_int(),m=read_int();
 _rep(i,1,n)a[i]=b[i]=read_int();
 sort(b+1,b+n+1);
 n2=unique(b+1,b+n+1)-b;
 _rep(i,1,n)a[i]=lower_bound(b+1,b+n2,a[i])-b;
 _for(i,1,n){
 int u=read_int(),v=read_int();
 Insert(u,v);Insert(v,u);
 }
 LCA::init(1);

Last
update:
2020/09/09
12:49

2020-2021:teams:legal_string:jxm2001:
数据结构练习_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E7%BB%83%E4%B9%A0_1&rev=1599626998

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:17

 dfs(1,0);
 int last=0;
 while(m--){
 int u=read_int()^last,v=read_int();
 enter(last=b[query2(u,v,read_int())]);
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E7%BB%83%E4%B9%A0_1&rev=1599626998

Last update: 2020/09/09 12:49

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E6%8D%AE%E7%BB%93%E6%9E%84%E7%BB%83%E4%B9%A0_1&rev=1599626998

	数据结构练习 1
	线段树合并/分裂
	习题一
	题意
	题解

	习题二
	题意
	题解

	可持久化数据结构
	习题一
	题意
	题解

