一种 $O\left(n^{\frac 23}\right)$ 计算积性函数前缀和的算法。
设 $f$、$g$ 为积性函数,$S(n)=\sum_{i=1}^n f(i)$,考虑 $f$、$g$ 的狄利克雷卷积的前缀和
\begin{equation}\sum_{i=1}^n (f\ast g)(i)=\sum_{i=1}^n\sum_{d\mid i}f(\frac id)g(d)=\sum_{d=1}^n \left(g(d)\sum_{k=1}^{\lfloor\frac nd\rfloor}f(k)\right)=\sum_{d=1}^n g(d)S(\lfloor\frac nd\rfloor)\end{equation}
所以有
\begin{equation}\sum_{i=1}^n (f\ast g)(i)=g(1)S(n)+\sum_{d=2}^n g(d)S(\lfloor\frac nd\rfloor)\end{equation}
移项得
\begin{equation}g(1)S(n)=\sum_{i=1}^n (f\ast g)(i)-\sum_{d=2}^n g(d)S(\lfloor\frac nd\rfloor)\tag{1}\end{equation}
观察式子,发现如果能快速求出 $(f\ast g)(n)$ 和 $g(n)$ 的前缀和,就可以通过整数分块和记忆化搜索快速求出 $S(n)$。
下面假设 $(f\ast g)(n)$ 和 $g(n)$ 的前缀和可以 $O(1)$ 求出。
若要求出 $S(n)$,需要先求出 $S(\lfloor\frac nd\rfloor)(d=2\sim n)$。
事实上,有 $\{x|\exists d\left((2\le d\le n)\land \left(\lfloor\frac nd\rfloor=x\right)\right)\}\subseteq \{1,2,3\cdots \lfloor\sqrt n\rfloor\}\cup\{\lfloor\frac n2\rfloor,\lfloor\frac n3\rfloor,\lfloor\frac n4\rfloor\cdots \lfloor\frac n{\lfloor\sqrt n\rfloor}\rfloor\}$。
对 $m\in \{x|\exists d\left((2\le d\le n)\land \left(\lfloor\frac nd\rfloor=x\right)\right)\}$,有 \begin{equation}\{1,2,3\cdots \lfloor\sqrt m\rfloor\}\cup\{\lfloor\frac m2\rfloor,\lfloor\frac m3\rfloor,\lfloor\frac m4\rfloor\cdots \lfloor\frac m{\lfloor\sqrt m\rfloor}\rfloor\} \subset\{1,2,3\cdots \lfloor\sqrt n\rfloor\}\cup\{\lfloor\frac n2\rfloor,\lfloor\frac n3\rfloor,\lfloor\frac n4\rfloor\cdots \lfloor\frac n{\lfloor\sqrt n\rfloor}\rfloor\}\end{equation}
因为首先 $m\lt n$,于是
\begin{equation}\{1,2,3\cdots \lfloor\sqrt m\rfloor\}\subset\{1,2,3\cdots \lfloor\sqrt n\rfloor\}\end{equation}
设 $m=\lfloor\frac nd\rfloor$,有
\begin{equation}\{\lfloor\frac n{2d}\rfloor,\lfloor\frac n{3d}\rfloor,\lfloor\frac n{4d}\rfloor\cdots \lfloor\frac n{\lfloor\sqrt m\rfloor d}\rfloor\} \subset \{\lfloor\frac n2\rfloor,\lfloor\frac n3\rfloor,\lfloor\frac n4\rfloor\cdots \lfloor\frac n{\lfloor\sqrt n\rfloor}\rfloor\}\end{equation}
所以记忆化搜索只需要求出最开始的 $O(\sqrt n)$ 个状态,即 $\{1,2,3\cdots \lfloor\sqrt n\rfloor\}\cup\{\lfloor\frac n2\rfloor,\lfloor\frac n3\rfloor,\lfloor\frac n4\rfloor\cdots \lfloor\frac n{\lfloor\sqrt n\rfloor}\rfloor\}$
根据整数分块,每个状态统计答案的时间复杂度为 $O(\sqrt n)$,总时间复杂度为
\begin{equation}\sum_{i=1}^{\lfloor\sqrt n\rfloor}\left(O(\sqrt i)+O\left(\sqrt {\frac ni}\right)\right)=O\left(\int_{x=1}^{\sqrt n}\sqrt x+\sqrt {\frac nx}\mathrm{d}x\right)=O\left(n^{\frac 34}\right)\end{equation}
考虑线性筛预处理前 $k$ 个前缀和 $(k\ge \sqrt n)$。
总时间复杂度变为
\begin{equation}O(k)+\sum_{i=1}^{\lfloor\sqrt {\frac nk}\rfloor}O\left(\sqrt {\frac ni}\right)=O(k)+O\left(\int_{x=1}^{\sqrt {\frac nk}}\sqrt {\frac nx}\mathrm{d}x\right)=O(k)+O\left(\frac n{\sqrt k}\right)\end{equation}
发现取 $k\sim n^{\frac 23}$ 时可以达到最佳时间复杂度 $O\left(n^{\frac 23}\right)$。
另外关于记忆化搜索的答案,建议用哈希表存储。
给定正整数 $n$,求
\begin{equation}\text{ans}_1=\sum_{i=1}^n\varphi(i)\end{equation}
\begin{equation}\text{ans}_2=\sum_{i=1}^n\mu(i)\end{equation}
取 $f=\varphi,g=I$,则$(f\ast g)=id$,根据 $(1)$ 式,有
\begin{equation}I(1)S(n)=\sum_{i=1}^n id(i)-\sum_{d=2}^n I(d)S(\lfloor\frac nd\rfloor)\end{equation}
即
\begin{equation}S(n)=\frac {n(n+1)}2-\sum_{d=2}^n S(\lfloor\frac nd\rfloor)\end{equation}
取 $f=\mu,g=I$,则$(f\ast g)=e$,根据 $(1)$ 式,有
\begin{equation}I(1)S(n)=\sum_{i=1}^n e(i)-\sum_{d=2}^n I(d)S(\lfloor\frac nd\rfloor)\end{equation}
即
\begin{equation}S(n)=1-\sum_{d=2}^n S(\lfloor\frac nd\rfloor)\end{equation}