
2026/01/14 04:00 1/3 数论 4

CVBB ACM Team - https://wiki.cvbbacm.com/

数论 4

Min_25筛

算法简介

一种 $O\left(\frac {n^{\frac 34}}{\log n}\right)$ 计算积性函数 $F(x)$ 前缀和的算法。

算法思路

首先给定 Min_25 筛的适用条件：$F(p)$ 的值可以拆分为若干个完全积性函数，且 $F(p^k)$ 可
以快速计算。

设 $\text{midv}(x)$ 表示 x 的最小素因子。将所有素数从小到大排列，记为 $p_1,p_2,p_3\cdots$

考虑构造完全积性函数 $f(x)$ 满足 $f(p)=F(p)$，设 $g(n,k)=\sum_{i=1}^n[\text{midv}(i)\gt p_k\text{
or } i\in \text{prime}]f(i)$。

考虑从 $g(n,k-1)$ 转移到 $g(n,k)$，等价于减去 $\text{midv}(i)=p_k$ 且 $i\not\in \text{prime}$ 的
$f(i)$ 的贡献。如果 $p_k^2\ge n$，则这样的数不存在。

否则将所有满足该条件的 i 提取出一个 p_k，记 $i'=\frac i{p_k}$。于是 $\text{midv}(i')\ge
p_k,f(i')=\frac {f(i)}{f(p_k)}$。

考虑减去 $f(p_k)g(\lfloor \frac n{p_k}\rfloor,k-1)$，发现 $g(\lfloor \frac n{p_k}\rfloor,k-1)$ 多包含了
$\sum_{i=1}^{k-1}f(p_i)$，于是再补上。

于是有状态转移方程

$$ g(n,k) \begin{cases} g(n,k-1), &p_k^2\ge n\\ g(n,k-1)-f(p_k)(g(\lfloor \frac n{p_k}\rfloor,k-1)-
\sum_{i=1}^{k-1}f(p_i)), &p_k^2\lt n \end{cases} $$

由于 $\lfloor \frac{\lfloor \frac na\rfloor}{b}\rfloor=\lfloor \frac n{ab}\rfloor$，于是 $g(a,b)$ 中的 a
只有 $O(\sqrt n)$ 个。

使用刷表法暴力转移上述方程直到 $p_{k+1}^2\gt n$，此时得到 $g(a,k)=\sum_{i=1}^a[i\in
\text{prime}]f(i)=\sum_{i=1}^a[i\in \text{prime}]F(i),a\in \lfloor \frac nx\rfloor$。

不妨将此时的 $g(n,k)$ 记为 $g(n)$。由于玄学因素，该过程的时间复杂度为 $O(\frac {n^{\frac
34}}{\log n})$。

接下来设 $S(n,k)=\sum_{i=1}^n[mdiv(i)\gt p_k]F(i)$，于是目标就是求 $S(n,0)+F(1)=S(n,0)+1$(积性函
数必有 $F(1)=1$)。

将 $S(n,k)$ 的和分为 $\sum[i\in \text{prime},i\gt p_k]S(i)$ 和 $\sum[i\not\in
\text{prime},\text{midv}(i)\gt p_k]S(i)$ 两部分。

前面部分有 $\sum[i\in \text{prime},i\gt p_k]S(i)=g(n)-\sum_{i=1}^k F(p_i)$，后面部分可以枚举最小素
因子及其幂次，可以得状态转移方程

Last
update:
2020/09/21
20:08

2020-2021:teams:legal_string:jxm2001:
数论_4

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E8%AE%BA_4&rev=1600690087

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:00

$$S(n,k)=g(n)-\sum_{i=1}^k F(p_i)+\sum_{p_i^j\le n,i\gt k}F(p_i^j)(S(\lfloor\frac
n{p_i^j}\rfloor,i)+[j\neq 1])$$

最后补上 $F(p_i^j)[j\neq 1]$ 是因为 $F(p_i^j)S(\lfloor\frac n{p_i^j}\rfloor,i)$ 不包含 $F(p_i^j)$ 的贡献，
但 $F(p_i)$ 的贡献已经计算。

由于 $p_i^2\gt n$ 时 $\sum_{p_i^j\le n,i\gt k}F(p_i^j)(S(\lfloor\frac n{p_i^j}\rfloor,i)+[j\neq 1])=0$，
于是只需要枚举 $O(\frac {\sqrt n}{\log n})$ 个素数即可。

由于玄学因素，该过程不需要记忆化且时间复杂度为 $O(\frac {n^{\frac 34}}{\log n})$。

算法例题

例题一

给定积性函数 $F(p_k)=p_k(p_k-1)$，计算 F 前 n 项和。

构造完全积性函数 $f_1(x)=x^2,f_2(x)=x$，于是可以计算出 $g_1(n),g_2(n)$。

然后令 $g(n)=g_1(n)-g_2(n)=\sum_{i=1}^n[i\in \text{prime}]F(i)$，即可计算出 $S(n,0)$。

const int MAXN=1e5+5,Mod=1e9+7,inv2=500000004,inv6=166666668;
namespace Min_25{
 LL n,blk[MAXN<<1];
 int sqr,vis[MAXN],prime[MAXN],p_cnt;
 int sp1[MAXN],sp2[MAXN],sp[MAXN],g1[MAXN<<1],g2[MAXN<<1],g[MAXN<<1];
 int b_cnt,idx1[MAXN],idx2[MAXN];
 int S(LL a,int b){
 if(a<=prime[b])return 0;
 int pos=(a<=sqr)?idx1[a]:idx2[n/a];
 int ans=(g[pos]-sp[b])%Mod;
 for(int i=b+1;i<=p_cnt&&1LL*prime[i]*prime[i]<=a;i++){
 LL pow_p=prime[i];
 for(int j=1,mod_p;pow_p<=a;j++){
 mod_p=pow_p%Mod;
ans=(ans+1LL*mod_p*(mod_p-1)%Mod*(S(a/pow_p,i)+(j!=1)))%Mod;
 pow_p*=prime[i];
 }
 }
 return (ans+Mod)%Mod;
 }
 int cal(LL n){
 Min_25::n=n;
 sqr=sqrt(n+0.5);
 for(int i=2;i<=sqr;i++){
 if(!vis[i])prime[++p_cnt]=i;
 for(int j=1;j<=p_cnt&&i*prime[j]<=sqr;j++){
 vis[i*prime[j]]=1;

2026/01/14 04:00 3/3 数论 4

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(i%prime[j]==0)break;
 }
 }
 _rep(i,1,p_cnt){
 sp1[i]=(sp1[i-1]+1LL*prime[i]*prime[i])%Mod;
 sp2[i]=(sp2[i-1]+prime[i])%Mod;
 sp[i]=(sp1[i]-sp2[i]+Mod)%Mod;
 }
 for(LL lef=1,rig=0;lef<=n;lef=rig+1){
 rig=n/(n/lef);
 blk[++b_cnt]=n/lef;
 int temp=blk[b_cnt]%Mod;
g1[b_cnt]=(1LL*temp*(temp+1)%Mod*(temp<<1|1)%Mod*inv6+Mod-1)%Mod;
 g2[b_cnt]=(1LL*temp*(temp+1)%Mod*inv2+Mod-1)%Mod;
 if(blk[b_cnt]<=sqr)
 idx1[blk[b_cnt]]=b_cnt;
 else
 idx2[rig]=b_cnt;
 }
 _rep(i,1,p_cnt){
 LL pow_p=1LL*prime[i]*prime[i];
 for(int j=1;j<=b_cnt&&blk[j]>=pow_p;j++){
 LL pos=blk[j]/prime[i];
 pos=(pos<=sqr)?idx1[pos]:idx2[n/pos];
 g1[j]=(g1[j]-1LL*prime[i]*prime[i]%Mod*(g1[pos]-
sp1[i-1]))%Mod;
 g1[j]=(g1[j]+Mod)%Mod;
 g2[j]=(g2[j]-1LL*prime[i]*(g2[pos]-sp2[i-1]))%Mod;
 g2[j]=(g2[j]+Mod)%Mod;
 }
 }
 _rep(i,1,b_cnt)
 g[i]=(g1[i]-g2[i]+Mod)%Mod;
 return (S(n,0)+1)%Mod;
 }
}
int main()
{
 LL n=read_LL();
 enter(Min_25::cal(n));
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E8%AE%BA_4&rev=1600690087

Last update: 2020/09/21 20:08

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E6%95%B0%E8%AE%BA_4&rev=1600690087

	数论 4
	Min_25筛
	算法简介
	算法思路
	算法例题
	例题一

