
2026/01/14 02:42 1/10 矩阵树定理

CVBB ACM Team - https://wiki.cvbbacm.com/

矩阵树定理

算法简介

一种生成树的计算定理，时间复杂度 $O\left(n^3\right)$。

算法实现

无向图

定义生成树的权值为所有该生成树中所有边权的乘积，则有如下结论：

邻接矩阵 D 中 $d_{i,i}=$ 所有与节点 i 相连的边的权值和，$d_{i,j}=0(i\neq j)$。

邻接矩阵 L 中 $d_{i,j}=edge[i][j].w$ (注意无向图中 $d_{i,j}=d_{j,i}$)。

记基尔霍夫矩阵 $K=D-L$，K' 为 K 去掉第 i 行与第 i 列得到的余子式(i 可以任取)。

则有 $det(K')=$ 所有生成树的权值和。特别地，当所有边权为 1 时所有生成树的权值和等于生成树个数。

有向图

邻接矩阵 L 定义不变(但要注意边的有向性)。

如果邻接矩阵 D 中 $d_{i,i}=$ 节点 i 的所有入边的权值和。

记 K' 为K 去掉第 i 行与第 i 列得到的余子式，则 $det(K')=$ 所有以节点 i 为根的外向树(边从
根指向叶子节点)的权值和。

如果邻接矩阵 D 中 $d_{i,i}=$ 节点 i 的所有出边的权值和。

记 K' 为K 去掉第 i 行与第 i 列得到的余子式，则 $det(K')=$ 所有以节点 i 为根的内向树(边从
叶子节点指向根)的权值和。

代码模板

洛谷p6178

给定一个 n 个节点 m 条带权边的图，输入 t 表示图是否为有向图。

求其所有不同生成树的权值之和(如果是有向图，则求以 1 为根的外向树)，对 10^9+7 取模。

#include <iostream>
#include <cstdio>
#include <cstdlib>

https://www.luogu.com.cn/problem/P6178
https://www.luogu.com.cn/problem/P6178

Last
update:
2020/07/24
20:45

2020-2021:teams:legal_string:jxm2001:
矩阵树定理

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%9F%A9%E9%98%B5%E6%A0%91%E5%AE%9A%E7%90%86&rev=1595594756

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:42

#include <algorithm>
#include <string>
#include <sstream>
#include <cstring>
#include <cctype>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <ctime>
#include <cassert>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline LL read_LL(){
 LL t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline char get_char(){
 char c=getchar();
 while(c==' '||c=='\n'||c=='\r')c=getchar();
 return c;
}
inline void write(LL x){
 register char c[21],len=0;
 if(!x)return putchar('0'),void();
 if(x<0)x=-x,putchar('-');
 while(x)c[++len]=x%10,x/=10;
 while(len)putchar(c[len--]+48);
}
inline void space(LL x){write(x),putchar(' ');}
inline void enter(LL x){write(x),putchar('\n');}
const int MAX_size=305,mod=1e9+7;
struct Matrix{
 int ele[MAX_size][MAX_size];
};
int Inv(int x,int p){
 int ans=1,base=x,k=p-2;

2026/01/14 02:42 3/10 矩阵树定理

CVBB ACM Team - https://wiki.cvbbacm.com/

 while(k){
 if(k&1)
 ans=1LL*ans*base%p;
 base=1LL*base*base%p;
 k>>=1;
 }
 return ans;
}
int det(Matrix a,int n,int mod){
 int ans=1;
 _rep(i,2,n){
 int pos=i;
 _rep(j,i,n)if(a.ele[j][i]){pos=j;break;}
 if(!a.ele[pos][i])return 0;
 if(pos!=i){_rep(j,i,n) swap(a.ele[i][j],a.ele[pos][j]);ans=mod-
ans;}
 ans=1LL*ans*a.ele[i][i]%mod;
 int k=Inv(a.ele[i][i],mod);
 _rep(j,i,n)a.ele[i][j]=1LL*a.ele[i][j]*k%mod;
 _rep(j,i+1,n)for(int k=n;k>=i;k--)
 a.ele[j][k]=(a.ele[j][k]-1LL*a.ele[j][i]*a.ele[i][k])%mod;
 }
 return (ans+mod)%mod;
}
int main()
{
 int n=read_int(),m=read_int(),t=read_int(),u,v,w;
 Matrix x;
 mem(x.ele,0);
 if(t==0){
 while(m--){
 u=read_int(),v=read_int(),w=read_int();
 if(u==v)continue;
x.ele[u][u]=(x.ele[u][u]+w)%mod,x.ele[v][v]=(x.ele[v][v]+w)%mod;
 x.ele[u][v]=(x.ele[u][v]-w)%mod,x.ele[v][u]=(x.ele[v][u]-
w)%mod;
 }
 }
 else{
 while(m--){
 u=read_int(),v=read_int(),w=read_int();
 if(u==v)continue;
 x.ele[u][v]=(x.ele[u][v]-
w)%mod,x.ele[v][v]=(x.ele[v][v]+w)%mod;
 }
 }
 enter(det(x,n,mod));
 return 0;
}

Last
update:
2020/07/24
20:45

2020-2021:teams:legal_string:jxm2001:
矩阵树定理

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%9F%A9%E9%98%B5%E6%A0%91%E5%AE%9A%E7%90%86&rev=1595594756

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:42

算法练习

习题一

洛谷p3317

题意

给定一个 n 个点的完全图，表示 n 个城市，该地区经过了一场洪水，城市之间的道路受损。

输入一个 $n\times n$ 矩阵，矩阵元素 $p_{i,j}$ 表示城市 i,j 之间道路依然连通的概率。

问经过洪水后该地区所有道路恰好构成一棵树的概率。

输入保证 $p_{i,j}=p_{j,i},p_{i,i}=0$。

题解

若将 $p_{i,j}$ 作为边 i,j 的权值套用矩阵树定理，设 E 为总边集 T 为生成树边集，则有

\begin{equation}P=\sum_T\prod_{e\in E-T}(1-p_e)\prod_{e\in T}p_e=\prod_{e\in E}(1-
p_e)\sum_T\prod_{e\in T}\frac {p_e}{1-p_e}\end{equation}

最后关于 $p_e=1$ 的情况，可以考虑缩点，或者令 $p_e=1-\varepsilon$。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <sstream>
#include <cstring>
#include <cctype>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <ctime>
#include <cassert>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;

https://www.luogu.com.cn/problem/P3317
https://www.luogu.com.cn/problem/P3317

2026/01/14 02:42 5/10 矩阵树定理

CVBB ACM Team - https://wiki.cvbbacm.com/

inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline LL read_LL(){
 LL t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline char get_char(){
 char c=getchar();
 while(c==' '||c=='\n'||c=='\r')c=getchar();
 return c;
}
inline void write(LL x){
 register char c[21],len=0;
 if(!x)return putchar('0'),void();
 if(x<0)x=-x,putchar('-');
 while(x)c[++len]=x%10,x/=10;
 while(len)putchar(c[len--]+48);
}
inline void space(LL x){write(x),putchar(' ');}
inline void enter(LL x){write(x),putchar('\n');}
const int MAX_size=55;
const double eps=1e-8;
struct Matrix{
 double ele[MAX_size][MAX_size];
};
double det(Matrix a,int n){
 double ans=1.0;
 _rep(i,2,n){
 int pos=i;
 _rep(j,i+1,n)if(fabs(a.ele[j][i])>fabs(a.ele[pos][i]))pos=j;
 if(fabs(a.ele[pos][i])<eps)return 0.0;
 if(pos!=i){_rep(j,i,n)swap(a.ele[i][j],a.ele[pos][j]);ans=-ans;}
 ans*=a.ele[i][i];
 for(int j=n;j>=i;j--)a.ele[i][j]/=a.ele[i][i];
 _rep(j,i+1,n)for(int k=n;k>=i;k--)
 a.ele[j][k]=a.ele[j][k]-a.ele[j][i]*a.ele[i][k];
 }
 return ans;
}
double a[MAX_size][MAX_size];
int main()
{
 int n=read_int();double ans=1.0;
 Matrix x;
 mem(x.ele,0);

Last
update:
2020/07/24
20:45

2020-2021:teams:legal_string:jxm2001:
矩阵树定理

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%9F%A9%E9%98%B5%E6%A0%91%E5%AE%9A%E7%90%86&rev=1595594756

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:42

 _rep(i,1,n)
 _rep(j,1,n){
 scanf("%lf",&a[i][j]);
 if(fabs(1.0-a[i][j])<eps)
 a[i][j]=1.0-eps;
 if(i>j)
 ans*=1.0-a[i][j];
 a[i][j]/=1.0-a[i][j];
 }
 _rep(i,1,n)
 _rep(j,1,n)
 x.ele[i][j]-=a[i][j],x.ele[j][j]+=a[i][j];
 printf("%lf",ans*det(x,n));
 return 0;
}

习题二

洛谷p4208

题意

现在给出了一个简单无向加权图，求这个图中有多少个不同的最小生成树，结果对 31011 的模。

性质

如果 A,B 都是 G 的最小生成树，则将 A,B 中所有边权从小到大排序，将得到相同结果。1.
如果 A,B 都是 G 的最小生成树，则删去 A,B 中权值超过 w 的边后，A,B 图连通性完全2.
相同。(w 取值任意)

证明

对性质一，将 A,B 中所有边按边权从小到大排序，得 $a_1,a_2,\cdots a_n$ 和 $b_1,b_2,\cdots b_n$。

考虑 A,B 第一次出现边不相同的位置，有 $a_i\neq b_i$，不妨设 $w(a_i)\ge w(b_i)$。

情况一：存在 $a_j=b_i$，则有 $j\gt i,w(b_i)=w(a_j)\ge w(a_i)\ge w(b_i)$。

所以有 $w(a_i)=w(b_i)=w(a_j)$，交换 a_i,a_j，序列 $\{w(a)\}$ 不改变。

情况二：不存在 $a_j=b_i$，考虑把 b_i 加入 A，得到一个环，由于 A 是最小生成树，故环上所有边
权不超过 $w(b_i)$。

同时环上一定有某条边不属于 B，否则 B 上存在环，不妨记这条边为 a_j。

则有 $j\gt i,w(b_i)\ge w(a_j)\ge w(a_i)\ge w(b_i)$，所以有 $w(a_i)=w(b_i)=w(a_j)$。

https://www.luogu.com.cn/problem/P4208
https://www.luogu.com.cn/problem/P4208

2026/01/14 02:42 7/10 矩阵树定理

CVBB ACM Team - https://wiki.cvbbacm.com/

考虑把边 a_j 换成 b_i，然后交换 a_i,a_j 的在序列中位置，序列 $\{w(a)\}$ 不改变。

最后总有序列 $\{a\},\{b\}$ 完全相同，于是有初始的 $\{w(a)\}$ 与 $\{w(b)\}$ 完全相同，证毕。

对性质二，只能给出不太严谨的证明。考虑 Kruskal 算法过程。

由于 Kruskal 中权值相同的边排序任意，说明按任意顺序考虑权值相同的边，都不会影响后续结
果。

所有相同权值的边选取结束后，图的连通性必然相同，证毕。

题解

从小到大考虑每个不同的边权。考虑某个边权 w，记所有边权相同的边为边集 E_w。

根据性质二，所有边权小于 w 的边选择完成后图的连通性是确定的。于是对选择完成后的图进行缩点，
然后计算从边集 E_w 中选边的合法方案。

计算合法方案时发现即使选择完边集 E_w 中的边后也不能保证图是树，所以如果直接使用矩阵树定理
将返回 0。

于是考虑添加一些虚边保证合法选取 E_w 中的边后图形一定是树。

由于合法选取 E_w 中的边后图的连通性也是确定的，所以可以考虑在合法选取 E_w 中的边后图中加
入一些虚边使得图恰好连通。

发现将任意某个最小生成树中所有权值大于 w 作为虚边加入图中恰好能满足条件，然后使用矩阵树定
理即可计算方案数。

最终答案即为所有不同的边权的选择方案的乘积。

但题目给定的 31011 并不是素数，所以计算行列式的消元过程中不能直接计算逆元。

考虑在消元过程中模拟辗转相除法。但辗转相除法只对两个数操作，而消元需要对两行所有数操作。计算
行列式复杂度变为 $O(n^3\log v)$。

考虑在辗转相除过程中维护系数，即维护 $i'=ai+bj,j'=ci+dj$，可以将计算行列式复杂度降为 $O(n^3)$。

最后发现每次消元中 $n=$ 连通块个数 $=$ 最小生成树 T 中边权为 w 的边的个数 cnt_w，
于是总时间复杂度为

\begin{equation}O\left(\sum_{w\in T}\text{cnt}_w^3\right)=O(|T|^3)=O(n^3)\end{equation}

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <sstream>
#include <cstring>
#include <cctype>
#include <cmath>

Last
update:
2020/07/24
20:45

2020-2021:teams:legal_string:jxm2001:
矩阵树定理

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%9F%A9%E9%98%B5%E6%A0%91%E5%AE%9A%E7%90%86&rev=1595594756

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:42

#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <ctime>
#include <cassert>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline LL read_LL(){
 LL t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline char get_char(){
 char c=getchar();
 while(c==' '||c=='\n'||c=='\r')c=getchar();
 return c;
}
inline void write(LL x){
 register char c[21],len=0;
 if(!x)return putchar('0'),void();
 if(x<0)x=-x,putchar('-');
 while(x)c[++len]=x%10,x/=10;
 while(len)putchar(c[len--]+48);
}
inline void space(LL x){write(x),putchar(' ');}
inline void enter(LL x){write(x),putchar('\n');}
const int MAX_size=105,MAXN=105,MAXM=1e3+5,mod=31011;
struct Matrix{
 int ele[MAX_size][MAX_size];
};
int sp_gcd(int a,int b,pair<int,int> &x,pair<int,int> &y){
 int sign=1;
 x.first=1,x.second=0,y.first=0,y.second=1;
 while(b){
 x.first=(x.first-a/b*y.first)%mod;
 x.second=(x.second-a/b*y.second)%mod;
 a%=b;
 swap(x,y);

2026/01/14 02:42 9/10 矩阵树定理

CVBB ACM Team - https://wiki.cvbbacm.com/

 swap(a,b);
 sign=-sign;
 }
 return sign;
}
int det(Matrix a,int n,int mod){
 int ans=1;
 _rep(i,2,n){
 int pos=i;
 _rep(j,i,n)if(a.ele[j][i]){pos=j;break;}
 if(!a.ele[pos][i])return 0;
 if(pos!=i){_rep(j,i,n) swap(a.ele[i][j],a.ele[pos][j]);ans=mod-
ans;}
 pair<int,int> x,y;
 int t1,t2;
 _rep(j,i+1,n){
 ans*=sp_gcd(a.ele[i][i],a.ele[j][i],x,y);
 _rep(k,i,n){
 t1=a.ele[i][k],t2=a.ele[j][k];
 a.ele[i][k]=(t1*x.first+t2*x.second)%mod;
 a.ele[j][k]=(t1*y.first+t2*y.second)%mod;
 }
 }
 ans=ans*a.ele[i][i]%mod;
 }
 return (ans+mod)%mod;
}
struct Edge{
 int u,v,w;
 bool operator < (const Edge &b)const{
 return w<b.w;
 }
}edge[MAXM];
bool vis[MAXM];
int p[MAXN],block_id[MAXN],block_cnt;
int Find(int x){return x==p[x]?x:p[x]=Find(p[x]);}
int main()
{
 int n=read_int(),m=read_int(),u,v,w;
 Matrix X;
 _rep(i,1,m)
 edge[i].u=read_int(),edge[i].v=read_int(),edge[i].w=read_int();
 sort(edge+1,edge+1+m);
 _rep(i,1,n)
 p[i]=i;
 block_cnt=n;
 for(int i=1;i<=m&&block_cnt>1;i++){
 int x=Find(edge[i].u),y=Find(edge[i].v);
 if(x!=y)
 p[x]=y,vis[i]=true,block_cnt--;
 }

Last
update:
2020/07/24
20:45

2020-2021:teams:legal_string:jxm2001:
矩阵树定理

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%9F%A9%E9%98%B5%E6%A0%91%E5%AE%9A%E7%90%86&rev=1595594756

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:42

 if(block_cnt>1){
 puts("0");
 return 0;
 }
 int ans=1;
 for(int pos1=1,pos2=1;pos1<=m;pos1=pos2){
 _rep(i,1,n)p[i]=i,block_id[i]=0;
 _rep(i,1,m){
 if(vis[i]&&edge[i].w!=edge[pos1].w)
 p[Find(edge[i].u)]=Find(edge[i].v);
 }
 block_cnt=0;
 _rep(i,1,n){
 if(!block_id[Find(i)])block_id[Find(i)]=++block_cnt;
 block_id[i]=block_id[Find(i)];
 }
 _rep(i,1,block_cnt)_rep(j,1,block_cnt)X.ele[i][j]=0;
 while(edge[pos2].w==edge[pos1].w){
 u=block_id[edge[pos2].u],v=block_id[edge[pos2].v];
 X.ele[u][v]--;X.ele[v][u]--;
 X.ele[u][u]++;X.ele[v][v]++;
 pos2++;
 }
 ans=ans*det(X,block_cnt,mod)%mod;
 }
 enter(ans);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%9F%A9%E9%98%B5%E6%A0%91%E5%AE%9A%E7%90%86&rev=1595594756

Last update: 2020/07/24 20:45

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%9F%A9%E9%98%B5%E6%A0%91%E5%AE%9A%E7%90%86&rev=1595594756

	矩阵树定理
	算法简介
	算法实现
	无向图
	有向图

	代码模板
	算法练习
	习题一
	题意
	题解

	习题二
	题意
	性质
	证明

	题解

