
2026/01/14 07:39 1/9 线段树合并/分裂

CVBB ACM Team - https://wiki.cvbbacm.com/

线段树合并

算法简介

一种合并多个线段树(一般为权值线段树)的算法，主要用于解决染色问题，时空间复杂度 $O(m\log n)$。

算法思想

更新线段树时动态开点，合并时如果遇到叶子节点或空结点就直接 return，否则跑子树。

关于空间复杂度，每次动态开点 $O(\log n)$，所以总空间复杂度 $O(m\log n)$，注意线段树是四倍空间。

关于时间复杂度，每次合并时间复杂度为两棵线段树的重叠部分的结点数，所以不会超过较小的那棵线段
树的结点数。

所以合并操作的总时间复杂度等于动态开点总数，即 $O(m\log n)$。

代码模板

const int MAXS=MAXN*60;
int root[MAXN],tot;
struct Node{
 int max_cnt,ans;//自己需要维护的信息
 int ch[2];
}node[MAXS];
void push_up(int k){//自定义
 if(node[node[k].ch[0]].max_cnt>=node[node[k].ch[1]].max_cnt)
node[k].max_cnt=node[node[k].ch[0]].max_cnt,node[k].ans=node[node[k].ch[0]]
.ans;
 else
node[k].max_cnt=node[node[k].ch[1]].max_cnt,node[k].ans=node[node[k].ch[1]]
.ans;
}
void update(int &k,int lef,int rig,int pos,int v){
 if(!k) k=++tot;
 if(lef==rig) return node[k].max_cnt+=v,node[k].ans=pos,void();
 int mid=lef+rig>>1;
 if(pos>mid)
 update(node[k].ch[1],mid+1,rig,pos,v);
 else
 update(node[k].ch[0],lef,mid,pos,v);
 push_up(k);
}
void Merge(int &k1,int k2,int lef,int rig){
 if(!k1||!k2) return k1|=k2,void();
 if(lef==rig) return node[k1].max_cnt+=node[k2].max_cnt,void();

Last
update:
2020/07/06
20:25

2020-2021:teams:legal_string:jxm2001:
线段树合并_分裂

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%BA%BF%E6%AE%B5%E6%A0%91%E5%90%88%E5%B9%B6_%E5%88%86%E8%A3%82&rev=1594038302

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:39

 int mid=lef+rig>>1;
 Merge(node[k1].ch[0],node[k2].ch[0],lef,mid);
 Merge(node[k1].ch[1],node[k2].ch[1],mid+1,rig);
 push_up(k1);
}

算法练习

习题一

洛谷p4556

题意

给定一棵 n 个节点的数，m 个操作。

每个操作三个参数 x,y,z，表示给结点 x 到 y 的树链上的每个点打上一个 z 号标记。

经过所有操作后输出每个结点被打上的最多的标记的编号(满足条件的标记存在多个时输出编号最小的)，
如果该结点未被标记过，输出 0。

题解 1

离散化处理标记编号，防止 MLE。

每个结点用一棵权值线段树维护该结点的所有标记状态，树上差分打标记，最后从叶子结点开始向上合并
即可。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <sstream>
#include <cstring>
#include <cctype>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <ctime>
#include <cassert>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)

https://www.luogu.com.cn/problem/P4556
https://www.luogu.com.cn/problem/P4556

2026/01/14 07:39 3/9 线段树合并/分裂

CVBB ACM Team - https://wiki.cvbbacm.com/

#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline LL read_LL(){
 LL t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline char get_char(){
 char c=getchar();
 while(c==' '||c=='\n'||c=='\r')c=getchar();
 return c;
}
inline void write(LL x){
 register char c[21],len=0;
 if(!x)return putchar('0'),void();
 if(x<0)x=-x,putchar('-');
 while(x)c[++len]=x%10,x/=10;
 while(len)putchar(c[len--]+48);
}
inline void space(LL x){write(x),putchar(' ');}
inline void enter(LL x){write(x),putchar('\n');}
const int MAXN=1e5+5,MAXM=20;
struct Edge{
 int to,next;
}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt].to=v;
 edge[edge_cnt].next=head[u];
 head[u]=edge_cnt;
}
struct LCA{
 int d[MAXN],anc[MAXN][MAXM],log2[MAXN];
 void dfs(int u,int fa,int dep){
 anc[u][0]=fa,d[u]=dep;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)
 continue;
 dfs(v,u,dep+1);
 }
 }
 void build(int root,int n){

Last
update:
2020/07/06
20:25

2020-2021:teams:legal_string:jxm2001:
线段树合并_分裂

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%BA%BF%E6%AE%B5%E6%A0%91%E5%90%88%E5%B9%B6_%E5%88%86%E8%A3%82&rev=1594038302

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:39

 log2[1]=0;
 _rep(i,2,n)
 log2[i]=log2[i>>1]+1;
 dfs(root,-1,1);
 _rep(i,1,n){//下标从1开始
 for(int j=1;(1<<j)<n;j++)
 anc[i][j]=-1;
 }
 for(int j=1;(1<<j)<n;j++){
 _rep(i,1,n){
 if(anc[i][j-1]==-1)
 continue;
 anc[i][j]=anc[anc[i][j-1]][j-1];
 }
 }
 }
 int query(int p,int q){
 if(d[p]<d[q])
 swap(p,q);
 for(int i=log2[d[p]];i>=0;i--){
 if(d[p]-(1<<i)>=d[q])
 p=anc[p][i];
 }
 if(p==q)
 return p;
 for(int i=log2[d[p]];i>=0;i--){
 if(anc[p][i]!=-1&&anc[p][i]!=anc[q][i]){
 p=anc[p][i],q=anc[q][i];
 }
 }
 return anc[p][0];
 }
}lca;
const int MAXS=MAXN*60;
int root[MAXN],tot;
struct Node{
 int max_cnt,ans;
 int ch[2];
}node[MAXS];
void push_up(int k){
 if(node[node[k].ch[0]].max_cnt>=node[node[k].ch[1]].max_cnt)
node[k].max_cnt=node[node[k].ch[0]].max_cnt,node[k].ans=node[node[k].ch[0]]
.ans;
 else
node[k].max_cnt=node[node[k].ch[1]].max_cnt,node[k].ans=node[node[k].ch[1]]
.ans;
}
void update(int &k,int lef,int rig,int pos,int v){
 if(!k) k=++tot;
 if(lef==rig) return node[k].max_cnt+=v,node[k].ans=pos,void();

2026/01/14 07:39 5/9 线段树合并/分裂

CVBB ACM Team - https://wiki.cvbbacm.com/

 int mid=lef+rig>>1;
 if(pos>mid)
 update(node[k].ch[1],mid+1,rig,pos,v);
 else
 update(node[k].ch[0],lef,mid,pos,v);
 push_up(k);
}
void Merge(int &k1,int k2,int lef,int rig){
 if(!k1||!k2) return k1|=k2,void();
 if(lef==rig) return node[k1].max_cnt+=node[k2].max_cnt,void();
 int mid=lef+rig>>1;
 Merge(node[k1].ch[0],node[k2].ch[0],lef,mid);
 Merge(node[k1].ch[1],node[k2].ch[1],mid+1,rig);
 push_up(k1);
}
int X[MAXN],Y[MAXN],Z[MAXN],b[MAXN],ans[MAXN],Max_z;
void dfs(int u){
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(lca.anc[u][0]==v)
 continue;
 dfs(v);
 Merge(root[u],root[v],1,Max_z);
 }
 ans[u]=node[root[u]].max_cnt>0?node[root[u]].ans:0;
}
int main()
{
 int n=read_int(),q=read_int(),u,v,p;
 _for(i,1,n){
 u=read_int(),v=read_int();
 Insert(u,v);
 Insert(v,u);
 }
 lca.build(1,n);
 _for(i,0,q)
 X[i]=read_int(),Y[i]=read_int(),Z[i]=read_int();
 memcpy(b,Z,sizeof(Z));
 sort(b,b+q);
 Max_z=unique(b,b+q)-b;
 _for(i,0,q){
 Z[i]=lower_bound(b,b+Max_z,Z[i])-b+1;
update(root[X[i]],1,Max_z,Z[i],1);update(root[Y[i]],1,Max_z,Z[i],1);
 p=lca.query(X[i],Y[i]);
 update(root[p],1,Max_z,Z[i],-1);
 p=lca.anc[p][0];
 if(p!=-1)
 update(root[p],1,Max_z,Z[i],-1);
 }
 dfs(1);
 _rep(i,1,n)

Last
update:
2020/07/06
20:25

2020-2021:teams:legal_string:jxm2001:
线段树合并_分裂

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%BA%BF%E6%AE%B5%E6%A0%91%E5%90%88%E5%B9%B6_%E5%88%86%E8%A3%82&rev=1594038302

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:39

 if(ans[i])
 enter(b[ans[i]-1]);
 else
 enter(0);
 return 0;
}

题解 2

考虑树剖，将树上问题转换为区间问题，更新路径时只打差分打标记。

最后询问时只建一棵权值线段树，依次释放区间上每个位置的标记，维护标记前缀和、答案。

时间复杂度 $O(m\log^2 n)$，空间复杂度 $O(m\log n)$，但常数远小于线段树合并。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <string>
#include <sstream>
#include <cstring>
#include <cctype>
#include <cmath>
#include <vector>
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <ctime>
#include <cassert>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
#define _rep(i,a,b) for(int i=(a);i<=(b);++i)
#define mem(a,b) memset(a,b,sizeof(a))
using namespace std;
typedef long long LL;
inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline LL read_LL(){
 LL t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline char get_char(){

2026/01/14 07:39 7/9 线段树合并/分裂

CVBB ACM Team - https://wiki.cvbbacm.com/

 char c=getchar();
 while(c==' '||c=='\n'||c=='\r')c=getchar();
 return c;
}
inline void write(LL x){
 register char c[21],len=0;
 if(!x)return putchar('0'),void();
 if(x<0)x=-x,putchar('-');
 while(x)c[++len]=x%10,x/=10;
 while(len)putchar(c[len--]+48);
}
inline void space(LL x){write(x),putchar(' ');}
inline void enter(LL x){write(x),putchar('\n');}
const int MAXN=1e5+5,MAXM=20;
struct Edge{
 int to,next;
}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt].to=v;
 edge[edge_cnt].next=head[u];
 head[u]=edge_cnt;
}
struct lazy_tag{
 int v,next;
}lazy[MAXN*MAXM];
int head_2[MAXN],lazy_cnt;
void Insert_2(int u,int v){
 lazy[++lazy_cnt].v=v;
 lazy[lazy_cnt].next=head_2[u];
 head_2[u]=lazy_cnt;
}
int Max_cnt[MAXN<<2],Ans[MAXN<<2],lef[MAXN<<2],rig[MAXN<<2];
void build(int k,int L,int R){
 lef[k]=L,rig[k]=R;
 int M=L+R>>1;
 if(L==R)return Ans[k]=M,void();
 build(k<<1,L,M);
 build(k<<1|1,M+1,R);
}
void push_up(int k){
 if(Max_cnt[k<<1]>=Max_cnt[k<<1|1]){
 Max_cnt[k]=Max_cnt[k<<1];
 Ans[k]=Ans[k<<1];
 }
 else{
 Max_cnt[k]=Max_cnt[k<<1|1];
 Ans[k]=Ans[k<<1|1];
 }
}
void update(int k,int pos,int v){

Last
update:
2020/07/06
20:25

2020-2021:teams:legal_string:jxm2001:
线段树合并_分裂

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%BA%BF%E6%AE%B5%E6%A0%91%E5%90%88%E5%B9%B6_%E5%88%86%E8%A3%82&rev=1594038302

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:39

 if(lef[k]==rig[k])
 return Max_cnt[k]+=v,void();
 int mid=lef[k]+rig[k]>>1;
 if(pos<=mid)
 update(k<<1,pos,v);
 else
 update(k<<1|1,pos,v);
 push_up(k);
}
int d[MAXN],sz[MAXN],f[MAXN],dfs_id[MAXN],inv_id[MAXN],dfs_t;
int h_son[MAXN],mson[MAXN],p[MAXN];
void dfs_1(int u,int fa,int depth){
 sz[u]=1;f[u]=fa;d[u]=depth;mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)
 continue;
 dfs_1(v,u,depth+1);
 sz[u]+=sz[v];
 if(sz[v]>mson[u]){
 h_son[u]=v;
 mson[u]=sz[v];
 }
 }
}
void dfs_2(int u,int top){
 dfs_id[u]=++dfs_t;inv_id[dfs_t]=u;p[u]=top;
 if(mson[u])
 dfs_2(h_son[u],top);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==f[u]||v==h_son[u])
 continue;
 dfs_2(v,v);
 }
}
void update_path(int u,int v,int w){
 while(p[u]!=p[v]){
 if(d[p[u]]<d[p[v]])
 swap(u,v);
 Insert_2(dfs_id[p[u]],w);
 Insert_2(dfs_id[u]+1,-w);
 u=f[p[u]];
 }
 if(d[u]>d[v])
 swap(u,v);
 Insert_2(dfs_id[u],w);
 Insert_2(dfs_id[v]+1,-w);
}
void update_node(int u){

2026/01/14 07:39 9/9 线段树合并/分裂

CVBB ACM Team - https://wiki.cvbbacm.com/

 for(int i=head_2[u];i;i=lazy[i].next){
 if(lazy[i].v>0)
 update(1,lazy[i].v,1);
 else
 update(1,-lazy[i].v,-1);
 }
}
int X[MAXN],Y[MAXN],Z[MAXN],b[MAXN],ans[MAXN];
int main()
{
 int n=read_int(),q=read_int(),u,v,w;
 _for(i,1,n){
 u=read_int(),v=read_int();
 Insert(u,v);
 Insert(v,u);
 }
 _for(i,0,q)
 X[i]=read_int(),Y[i]=read_int(),Z[i]=read_int();
 memcpy(b,Z,sizeof(Z));
 sort(b,b+q);
 int Max_z=unique(b,b+q)-b;
 dfs_1(1,-1,0);
 dfs_2(1,1);
 build(1,1,Max_z);
 _for(i,0,q)
 update_path(X[i],Y[i],lower_bound(b,b+Max_z,Z[i])-b+1);
 _rep(i,1,n){
 update_node(i);
 ans[inv_id[i]]=Max_cnt[1]>0?b[Ans[1]-1]:0;
 }
 _rep(i,1,n)
 enter(ans[i]);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%BA%BF%E6%AE%B5%E6%A0%91%E5%90%88%E5%B9%B6_%E5%88%86%E8%A3%82&rev=1594038302

Last update: 2020/07/06 20:25

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E7%BA%BF%E6%AE%B5%E6%A0%91%E5%90%88%E5%B9%B6_%E5%88%86%E8%A3%82&rev=1594038302

	线段树合并
	算法简介
	算法思想
	代码模板
	算法练习
	习题一
	题意
	题解 1
	题解 2

