
2026/02/02 13:20 1/3 莫队算法 1

CVBB ACM Team - https://wiki.cvbbacm.com/

莫队算法

普通莫队

算法模型

只有询问操作，共 m 个询问，每个询问操作都是一个区间 $[l_i,r_i]$。询问区间范围为 $[1,n]$。

可以 $O(1)$ 根据当前维护区间 $[l,r]$ 更新到 $[l-1,r],[l,r+1],[l+1,r],[l,r-1]$。

则利用莫队可以 $O(n\sqrt m)$ 离线处理所有询问。

算法实现

先对 $[1,n]$ 进行分块，假设每块长度为 S。先将 $kS\lt l_i\le (k+1)S$ 的询问丢到同一个块。

对同一个块，根据 r_i 排序，然后依次处理排完序的每个询问，同时用两个指针维护当前区间。

首先对每个块，r_i 单调，于是每个块移动右指针的复杂度为 $O(n)$，移动右指针的总复杂度为
$O\left(\frac {n^2}S\right)$。

同时每个左指针每次只能在所在块中移动，于是每个询问左指针的复杂度为 $O(S)$，移动左指针的总复杂
度为 $O(mS)$。

于是总复杂度为 $O\left(\frac {n^2}S+mS\right)$，令 $S\sim O\left(\frac n{\sqrt m}\right)$，则总复杂度
为 $O(n\sqrt m)$。

注意 每次移动指针时要先拓展指针对应的区间再缩减指针对应区间，否则对应区间长度可能会变成负数产
生各种 bug。

算法例题

洛谷p1494

题意

给定一个长度为 n 的序列，每个询问给定一个区间 $[l_i,r_i]$，询问从该区间的序列中任意取两个数，这
两个数相同的概率。

题解

双指针维护区间中的每个值的个数，同时维护当前所有使得两数相同的方案数即可。

const int MAXN=5e4+5;

https://www.luogu.com.cn/problem/P1494
https://www.luogu.com.cn/problem/P1494

Last
update:
2021/02/01
20:27

2020-2021:teams:legal_string:jxm2001:
莫队算法_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%8E%AB%E9%98%9F%E7%AE%97%E6%B3%95_1&rev=1612182458

https://wiki.cvbbacm.com/ Printed on 2026/02/02 13:20

int blk_sz,a[MAXN],col[MAXN];
struct query{
 int l,r,idx;
 bool operator < (const query &b)const{
 if(l/blk_sz!=b.l/blk_sz)return l<b.l;
 return r<b.r;
 }
}q[MAXN];
LL ans1[MAXN],ans2[MAXN],cur;
LL gcd(LL a,LL b){
 while(b){
 LL t=b;
 b=a%b;
 a=t;
 }
 return a;
}
void add(int v){
 cur+=col[v];
 col[v]++;
}
void del(int v){
 col[v]--;
 cur-=col[v];
}
int main()
{
 int n=read_int(),m=read_int();
 blk_sz=1.0*n/sqrt(m)+1;
 _rep(i,1,n)
 a[i]=read_int();
 _for(i,0,m)
 q[i].l=read_int(),q[i].r=read_int(),q[i].idx=i;
 sort(q,q+m);
 int lef=1,rig=0;
 _for(i,0,m){
 if(q[i].l==q[i].r){
 ans1[q[i].idx]=0;
 ans2[q[i].idx]=1;
 continue;
 }
 while(lef>q[i].l)add(a[--lef]);
 while(rig<q[i].r)add(a[++rig]);
 while(lef<q[i].l)del(a[lef++]);
 while(rig>q[i].r)del(a[rig--]);
 ans1[q[i].idx]=cur;
 ans2[q[i].idx]=1LL*(q[i].r-q[i].l+1)*(q[i].r-q[i].l)/2;
 }
 _for(i,0,m){
 if(ans1[i]==0)

2026/02/02 13:20 3/3 莫队算法 1

CVBB ACM Team - https://wiki.cvbbacm.com/

 ans2[i]=1;
 else{
 LL g=gcd(ans1[i],ans2[i]);
 ans1[i]/=g;
 ans2[i]/=g;
 }
 printf("%lld/%lld\n",ans1[i],ans2[i]);
 }
 return 0;
}

算法优化

利用奇偶化排序，即奇数块按 r_i 从小到大排序，偶数块 r_i 从大到小排序。

于是可以减少从一个块转移到另一个块时 r_i 的移动次数，具体代码如下

struct query{
 int l,r,idx;
 bool operator < (const query &b)const{
 if(l/blk_sz!=b.l/blk_sz)return l<b.l;
 return ((l/blk_sz)&1)?(r<b.r):(r>b.r);
 }
};

带修莫队

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%8E%AB%E9%98%9F%E7%AE%97%E6%B3%95_1&rev=1612182458

Last update: 2021/02/01 20:27

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%8E%AB%E9%98%9F%E7%AE%97%E6%B3%95_1&rev=1612182458

	莫队算法
	普通莫队
	算法模型
	算法实现
	算法例题
	题意
	题解

	算法优化

	带修莫队

