
2026/01/14 02:15 1/2 虚树

CVBB ACM Team - https://wiki.cvbbacm.com/

虚树

算法简介

一种用于加速树上 dp 算法，时间复杂度 $O(k\log k)$，其中 k 为树上的关键节点数。

算法思想

树上关键点数量较少时很多节点不需要进行 dp，考虑重建一棵树，只保留必要的节点。

发现所有关键节点的 LCA 必须保留，但如果暴力枚举每个关键节点的 LCA 并考虑是
否保留时间复杂度至少为 $O(k^2)$。

事实上只需要将关键点序列dfs 序排序，然后枚举序列中相邻节点的 LCA。

可以证明该方法枚举得到的 LCA 不会有遗漏。假设 $p=\text{LCA}(u,v)$，且 u,v 不是序列中
相邻的节点。

于是必有 u,v 属于 p 的不同子树，考虑取序列中与 v 相邻且 dfs 序小于 v 的节点，记
为 v_2。

首先易知 v_2 也位于 p 的子树。于是如果 v_2 与 v 不在同一棵子树，那么
$\text{LCA}(v_2,v)=p$。

否则把 v 换成 v_2，继续重复上述操作，最后总有 v_{k-1},v_k 不在同一棵子树(最差的情况是
$v_k=u$)，证毕。

然后为了保证最终选取的点一定会构成树而不是森林，考虑强制将根节点加入虚树或者构造一个虚根。

接下来是建边过程，考虑用单调栈维护从根节点出发的一条树链。

每新加入一个节点时，先计算新节点与栈顶节点(事实上栈顶节点一定是上一次加入的节点，即与新元素相
邻的节点)的 LCA，记为 p。

如果 p 恰好为栈顶节点，则直接将新节点入栈。

否则，将栈顶节点弹出直到栈顶栈顶节点的下一个节点的 dfs 序不大于 p 的dfs 序。

注意到每当栈顶节点被弹出时他在虚树中的位置已经确定，可以直接将他与下一个栈顶节点连一条边。

然后如果 p 恰为栈顶栈顶节点的下一个节点，则将栈顶节点弹出并将他与下一个栈顶节点连一条边。

否则将栈顶节点弹出并将他与 p 连一条边，再将 p 加入栈。这一系列操作结束后再将新节点入栈。

所有关键节点都访问结束后将栈的剩余元素出栈并连边。

算法模板

Last
update:
2020/07/26
19:56

2020-2021:teams:legal_string:jxm2001:
虚树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%99%9A%E6%A0%91&rev=1595764583

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:15

洛谷p2495

题意

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%99%9A%E6%A0%91&rev=1595764583

Last update: 2020/07/26 19:56

https://www.luogu.com.cn/problem/P2495
https://www.luogu.com.cn/problem/P2495
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%99%9A%E6%A0%91&rev=1595764583

	虚树
	算法简介
	算法思想
	算法模板
	题意

