
2026/01/14 04:02 1/5 虚树

CVBB ACM Team - https://wiki.cvbbacm.com/

虚树

算法简介

一种用于加速树上 dp 算法，时间复杂度 $O(k\log k)$，其中 k 为树上的关键节点数。

算法思想

树上关键点数量较少时很多节点不需要进行 dp，考虑重建一棵树，只保留必要的节点。

发现所有关键节点的 LCA 必须保留，但如果暴力枚举每个关键节点的 LCA 并考虑是
否保留时间复杂度至少为 $O(k^2)$。

事实上只需要将关键点序列dfs 序排序，然后枚举序列中相邻节点的 LCA。

可以证明该方法枚举得到的 LCA 不会有遗漏。假设 $p=\text{LCA}(u,v)$，且 u,v 不是序列中
相邻的节点。

于是必有 u,v 属于 p 的不同子树，考虑取序列中与 v 相邻且 dfs 序小于 v 的节点，记
为 v_2。

首先易知 v_2 也位于 p 的子树。于是如果 v_2 与 v 不在同一棵子树，那么
$\text{LCA}(v_2,v)=p$。

否则把 v 换成 v_2，继续重复上述操作，最后总有 v_{k-1},v_k 不在同一棵子树(最差的情况是
$v_k=u$)，证毕。

然后为了保证最终选取的点一定会构成树而不是森林，考虑强制将根节点加入虚树或者构造一个虚根。

接下来是建边过程，考虑用单调栈维护从根节点出发的一条树链。

每新加入一个节点时，先计算新节点与栈顶节点(事实上栈顶节点一定是上一次加入的节点，即与新元素相
邻的节点)的 LCA，记为 p。

如果 p 恰好为栈顶节点，则直接将新节点入栈。

否则，将栈顶节点弹出直到栈顶栈顶节点的下一个节点的 dfs 序不大于 p 的dfs 序。

注意到每当栈顶节点被弹出时他在虚树中的位置已经确定，可以直接将他与下一个栈顶节点连一条边。

然后如果 p 恰为栈顶栈顶节点的下一个节点，则将栈顶节点弹出并将他与下一个栈顶节点连一条边。

否则将栈顶节点弹出并将他与 p 连一条边，再将 p 加入栈。这一系列操作结束后再将新节点入栈。

所有关键节点都访问结束后将栈的剩余元素出栈并连边。

算法模板

Last
update:
2020/07/27
10:23

2020-2021:teams:legal_string:jxm2001:
虚树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%99%9A%E6%A0%91&rev=1595816622

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:02

洛谷p2495

题意

给定一棵以 1 为根的边权树，设切断一条边的费用为这条边的边权。接下来 q 次询问。

每次询问给定 k_i 个节点(保证不含根节点)，问使得这 k_i 个节点与根节点不连通的最小费用和为多
少。

题解

首先考虑 dp 过程，有状态转移方程

\begin{equation}v \text{ 是 }u \text{的儿子节点且} v \text{ 不是关键节
点，}\text{dp}(u)\gets\min(\text{dp}(v),w(u,v))\end{equation} \begin{equation}v \text{ 是 }u
\text{的儿子节点且} v \text{ 是关键节点，}\text{dp}(u)\gets w(u,v)\end{equation}

接下来建立虚树，并令 $w(u,v)$ 为 $u\to v$ 路径上的最短边。事实上令 $w(u,v)$ 为 $1\to v$ 的最短边
不影响最终答案。

最后暴力 dp 即可，时间复杂度 $O(\sum_{i=1}^q k_i\log k_i)$。注意每次新建树时不能暴力清
零 head 数组，需要在建树过程中清零。

const int MAXN=3e5+5;
struct Edge{
 int to,w,next;
}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v,int w){
 edge[++edge_cnt]=Edge{v,w,head[u]};
 head[u]=edge_cnt;
}
int d[MAXN],dis[MAXN],sz[MAXN],f[MAXN],dfn[MAXN],dfs_t;
int h_son[MAXN],mson[MAXN],p[MAXN];
void dfs_1(int u,int fa,int depth,int Dis){
 sz[u]=1;f[u]=fa;d[u]=depth;mson[u]=0;dfn[u]=++dfs_t;dis[u]=Dis;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)
 continue;
 dfs_1(v,u,depth+1,min(Dis,edge[i].w));
 sz[u]+=sz[v];
 if(sz[v]>mson[u])
 h_son[u]=v,mson[u]=sz[v];
 }
}
void dfs_2(int u,int top){

https://www.luogu.com.cn/problem/P2495
https://www.luogu.com.cn/problem/P2495

2026/01/14 04:02 3/5 虚树

CVBB ACM Team - https://wiki.cvbbacm.com/

 p[u]=top;
 if(mson[u])dfs_2(h_son[u],top);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==f[u]||v==h_son[u])
 continue;
 dfs_2(v,v);
 }
}
int LCA(int u,int v){
 while(p[u]!=p[v]){
 if(d[p[u]]<d[p[v]])swap(u,v);
 u=f[p[u]];
 }
 return d[u]<d[v]?u:v;
}
struct cmp{
 bool operator () (const int a,const int b)const{
 return dfn[a]<dfn[b];
 }
};
int Stack[MAXN],top,node[MAXN];
void build(int k){
 edge_cnt=0;
 sort(node,node+k,cmp());
 Stack[top=1]=1;head[1]=0;
 _for(i,0,k){
 int p=LCA(Stack[top],node[i]);
 if(p!=Stack[top]){
while(dfn[p]<dfn[Stack[top-1]])Insert(Stack[top-1],Stack[top],dis[Stack[top
]]),top--;
 if(p!=Stack[top-1])
 head[p]=0,Insert(p,Stack[top],dis[Stack[top]]),Stack[top]=p;
 else
 Insert(Stack[top-1],Stack[top],dis[Stack[top]]),top--;
 }
 head[node[i]]=0,Stack[++top]=node[i];
 }
 while(top>1)Insert(Stack[top-1],Stack[top],dis[Stack[top]]),top--;
}
bool is_key[MAXN];
LL dp(int u){
 LL ans=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(is_key[v])
 ans+=edge[i].w;
 else
 ans+=min(dp(v),1LL*edge[i].w);
 }
 return ans;

Last
update:
2020/07/27
10:23

2020-2021:teams:legal_string:jxm2001:
虚树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%99%9A%E6%A0%91&rev=1595816622

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:02

}
int main()
{
 int n=read_int(),root=1,u,v,w;
 _for(i,1,n){
 u=read_int(),v=read_int(),w=read_int();
 Insert(u,v,w);Insert(v,u,w);
 }
 dfs_1(root,0,0,1e9);
 dfs_2(root,root);
 int q=read_int();
 while(q--){
 int k=read_int();
 _for(i,0,k){
 node[i]=read_int();
 is_key[node[i]]=true;
 }
 build(k);
 enter(dp(root));
 _for(i,0,k)
 is_key[node[i]]=false;
 }
 return 0;
}

算法练习

洛谷p3233

习题一

题意

给定一棵 n 个节点的无根树，q 次询问。

每次询问给定 k_i 个关键点。树上每个节点属于离它最近的关键点(如果有多个距离最近点则选择编号最
小的)。

每次询问要求输出 k_i 个数，代表属于每个给定关键点的节点数。

题解

https://www.luogu.com.cn/problem/P3233
https://www.luogu.com.cn/problem/P3233

2026/01/14 04:02 5/5 虚树

CVBB ACM Team - https://wiki.cvbbacm.com/

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%99%9A%E6%A0%91&rev=1595816622

Last update: 2020/07/27 10:23

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E8%99%9A%E6%A0%91&rev=1595816622

	虚树
	算法简介
	算法思想
	算法模板
	题意
	题解

	算法练习
	习题一
	题意
	题解

