
2026/01/14 07:33 1/11 静态点分治

CVBB ACM Team - https://wiki.cvbbacm.com/

静态点分治

算法简介

一种利用分治进行树上路径统计的算法，算法时间复杂度一般为 $O(n\log n)$

算法思想

所有路径分为两种，一种是过根结点的，一种是完全在根结点的某棵子树中的

因此可以考虑分治算法，选取一个点将无根树转换为有根树，然后递归处理每个棵以根节点的儿子为根的
子树

如果选取树的重心作为根结点，则每棵子树的结点个数不超过 $\frac n2$ ，可以保证递归深度不超过 $\log
n$

在这个基础上如果能在 $O\left(n\right)$ 时间维护经过根结点路径相关信息，则算法总时间复杂度为
$O(n\log n)$

代码实现

重心的寻找可以利用树形 dp ，处理出所有结点的 sz ，所有结点的最大子树
$\text{mson}\left(u\right)=\max\left(\max\left(\text{sz}\left(\text{son}\left(u\right)\right),\text{tot_sz
}-\text{sz}\left(u\right)\right)\right)$

不断更新 mson 最小的结点，最后便可以得到重心，时间复杂度 $O(n)$

分治过程需要注意标记已经访问的结点，同时更新子树大小 tot_sz ，具体实现见模板

代码模板

int sz[MAXN],mson[MAXN],tot_sz,root,root_sz;
bool vis[MAXN];
void query(int u);//自定义
void find_root(int u,int fa){
 sz[u]=1;mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 find_root(v,u);
 sz[u]+=sz[v];
 mson[u]=max(mson[u],sz[v]);
 }

Last
update:
2020/05/24
17:57

2020-2021:teams:legal_string:jxm2001:
静态点分治

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E9%9D%99%E6%80%81%E7%82%B9%E5%88%86%E6%B2%BB&rev=1590314265

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:33

 mson[u]=max(mson[u],tot_sz-sz[u]);
 if(mson[u]<root_sz){
 root=u;
 root_sz=mson[u];
 }
}
void solve(int u){
 vis[u]=true;query(u);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 tot_sz=sz[v];root_sz=inf;
 find_root(v,u);
 solve(root);
 }
}

代码练习

习题1

洛谷p3806

题目大意是说给定一棵 n 个结点的正权树，多次查询，每次查询是否存在长度为 k 的路径

对根结点，先考虑暴力法，用树形 dp 求出子树上各节点到根结点的距离，然后两两枚举，看看有没有两
个结点距离和为 k

这样每层递归的时间复杂度是 $O\left(n^2\right)$ ，显然会 T

考虑用中途相遇法，可以将每层递归的时间复杂度优化到 $O(n)$ ，单次查询时间复杂度 $O(n\log n)$

但要注意三点

一、枚举过根结点的路径时路径两端点显然不能在同一棵子树里，所以要先求出一棵子树所有的
dist ，全部判断完后再进行标记

二、题目给定 $k\le 10^7$ ，所以不用标记大于 10^7 的 dist

三、清空标记不能用 memset ，会 T ，这里开了一个 vector 来记录之前的标记

另一个优化是可以离线处理查询，这样只需要分治一次，可以减小常数。

#include <cstdio>
#include <cctype>
#include <vector>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
using namespace std;

https://www.luogu.com.cn/problem/P3806
https://www.luogu.com.cn/problem/P3806

2026/01/14 07:33 3/11 静态点分治

CVBB ACM Team - https://wiki.cvbbacm.com/

inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
const int MAXN=1e4+5,inf=1e7+5;
struct Edge{
 int to,w,next;
}edge[MAXN<<1];
int n,edge_cnt,head[MAXN];
int m,q[MAXN];
int sz[MAXN],mson[MAXN],tot_sz,root,root_sz;
int dis[MAXN];
vector<int> d,sd;
bool vis[MAXN],mark[inf],ok[MAXN];
void Insert(int u,int v,int w){
 edge[++edge_cnt].to=v;
 edge[edge_cnt].w=w;
 edge[edge_cnt].next=head[u];
 head[u]=edge_cnt;
}
void find_root(int u,int fa){
 sz[u]=1;mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 find_root(v,u);
 sz[u]+=sz[v];
 mson[u]=max(mson[u],sz[v]);
 }
 mson[u]=max(mson[u],tot_sz-sz[u]);
 if(mson[u]<root_sz){
 root=u;
 root_sz=mson[u];
 }
}
void dfs(int u,int fa){
 d.push_back(dis[u]);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 dis[v]=dis[u]+edge[i].w;
 dfs(v,u);
 }
}
void query(int u){
 sd.clear();
 for(int i=head[u];i;i=edge[i].next){

Last
update:
2020/05/24
17:57

2020-2021:teams:legal_string:jxm2001:
静态点分治

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E9%9D%99%E6%80%81%E7%82%B9%E5%88%86%E6%B2%BB&rev=1590314265

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:33

 d.clear();
 int v=edge[i].to;
 if(vis[v])
 continue;
 dis[v]=edge[i].w;
 dfs(v,u);
 _for(j,0,d.size())
 _for(k,0,m){
 if(q[k]>=d[j])
 ok[k]|=mark[q[k]-d[j]];
 }
 _for(j,0,d.size()){
 if(d[j]<inf){
 mark[d[j]]=true;
 sd.push_back(d[j]);
 }
 }
 }
 _for(i,0,sd.size())
 mark[sd[i]]=false;
}
void solve(int u){
 vis[u]=mark[0]=true;query(u);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 tot_sz=sz[v];root_sz=inf;
 find_root(v,u);
 solve(root);
 }
}
int main()
{
 n=read_int(),m=read_int();
 int u,v,w;
 _for(i,1,n){
 u=read_int()-1,v=read_int()-1,w=read_int();
 Insert(u,v,w);
 Insert(v,u,w);
 }
 _for(i,0,m)
 q[i]=read_int();
 root_sz=inf;
 tot_sz=n;
 find_root(0,-1);
 solve(root);
 _for(i,0,m){
 if(ok[i])
 puts("AYE");

2026/01/14 07:33 5/11 静态点分治

CVBB ACM Team - https://wiki.cvbbacm.com/

 else
 puts("NAY");
 }
 return 0;
}

习题2

洛谷p4149

给一棵树，每条边有权。求一条简单路径，权值和等于 q ，且边的数量最小。

类似习题1，开个 mark 数组存一下到根结点距离为 dist 的路径的最短边数

vector 不仅要记录距离，还要记录深度，时间复杂度 $O(n\log n)$

#include <cstdio>
#include <cctype>
#include <vector>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
using namespace std;
inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
const int MAXN=2e5+5,inf=1e6+5;
struct Edge{
 int to,w,next;
}edge[MAXN<<1];
int n,edge_cnt,head[MAXN];
int sz[MAXN],mson[MAXN],tot_sz,root,root_sz;
int dis1[MAXN],dis2[MAXN],mark[inf],q,ans=MAXN;
vector<pair<int,int> > d,sd;
bool vis[MAXN];
void Insert(int u,int v,int w){
 edge[++edge_cnt].to=v;
 edge[edge_cnt].w=w;
 edge[edge_cnt].next=head[u];
 head[u]=edge_cnt;
}
void find_root(int u,int fa){
 sz[u]=1;mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 find_root(v,u);

https://www.luogu.com.cn/problem/P4149
https://www.luogu.com.cn/problem/P4149

Last
update:
2020/05/24
17:57

2020-2021:teams:legal_string:jxm2001:
静态点分治

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E9%9D%99%E6%80%81%E7%82%B9%E5%88%86%E6%B2%BB&rev=1590314265

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:33

 sz[u]+=sz[v];
 mson[u]=max(mson[u],sz[v]);
 }
 mson[u]=max(mson[u],tot_sz-sz[u]);
 if(mson[u]<root_sz){
 root=u;
 root_sz=mson[u];
 }
}
void dfs(int u,int fa){
 if(dis1[u]>q)
 return;
 d.push_back(make_pair(dis1[u],dis2[u]));
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 dis1[v]=dis1[u]+edge[i].w;
 dis2[v]=dis2[u]+1;
 dfs(v,u);
 }
}
void query(int u){
 mark[0]=0;
 sd.clear();
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 d.clear();
 dis1[v]=edge[i].w,dis2[v]=1;
 dfs(v,u);
 _for(j,0,d.size())
 ans=min(ans,d[j].second+mark[q-d[j].first]);
 _for(j,0,d.size()){
 mark[d[j].first]=min(mark[d[j].first],d[j].second);
 sd.push_back(d[j]);
 }
 }
 _for(i,0,sd.size())
 mark[sd[i].first]=MAXN;
}
void solve(int u){
 vis[u]=true;query(u);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 tot_sz=sz[v];root_sz=MAXN;
 find_root(v,u);

2026/01/14 07:33 7/11 静态点分治

CVBB ACM Team - https://wiki.cvbbacm.com/

 solve(root);
 }
}
int main()
{
 n=read_int(),q=read_int();
 int u,v,w;
 _for(i,1,n){
 u=read_int(),v=read_int(),w=read_int();
 Insert(u,v,w);
 Insert(v,u,w);
 }
 _for(i,0,inf)
 mark[i]=MAXN;
 root_sz=MAXN;
 tot_sz=n;
 find_root(0,-1);
 solve(root);
 if(ans==MAXN)
 puts("-1");
 else
 printf("%d",ans);
 return 0;
}

习题3

洛谷p4178

给定一棵 n 个结点的正权树和一个正数 k ，统计有多少对结点 (a,b) 满足 $\text{dist}(a,b)\le k$

把中途相遇法换成树状数组或名次树即可，时间复杂度 $O\left(n\log^2 n\right)$

习题4

UVA12161

给定一棵 n 个结点的树,每条边包含长度 L 和费用 $D (1\le D,L \le 1000)$ 。选择一条总费用不超过
m 的路径，使得路径总长度最大。

考虑单调队列，时间复杂度 $O\left(n\log^2 n\right)$ 。另外本题存在 $O\left(n\log n\right)$ 解法，有兴
趣的可以自己尝试

习题5

洛谷P2664

给定一棵 n 个结点的树，树的每个节点有个颜色

https://www.luogu.com.cn/problem/P4178
https://www.luogu.com.cn/problem/P4178
https://www.luogu.com.cn/problem/UVA12161
https://www.luogu.com.cn/problem/P2664
https://www.luogu.com.cn/problem/P2664

Last
update:
2020/05/24
17:57

2020-2021:teams:legal_string:jxm2001:
静态点分治

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E9%9D%99%E6%80%81%E7%82%B9%E5%88%86%E6%B2%BB&rev=1590314265

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:33

定义 $s(i,j)$ 为 i 到 j 的颜色数量， $sum_i=\sum_{j=1}^n s(i,j)$ ，要求输出所有 sum_i

这题需要计算贡献，思路较复杂，这里只给出代码供参考，时间复杂度 $O(n\log n)$ ，另外本题存在
$O(n)$ 解法，有兴趣的可以自己尝试

#include <cstdio>
#include <cctype>
#include <vector>
#define _for(i,a,b) for(int i=(a);i<(b);++i)
using namespace std;
typedef long long LL;
inline int read_int(){
 int t=0;bool sign=false;char c=getchar();
 while(!isdigit(c)){sign|=c=='-';c=getchar();}
 while(isdigit(c)){t=(t<<1)+(t<<3)+(c&15);c=getchar();}
 return sign?-t:t;
}
inline void write(LL x){
 register char c[21],len=0;
 if(!x)return putchar('0'),void();
 if(x<0)x=-x,putchar('-');
 while(x)c[++len]=x%10,x/=10;
 while(len)putchar(c[len--]+48);
}
inline void space(LL x){write(x),putchar(' ');}
inline void enter(LL x){write(x),putchar('\n');}
const int MAXN=1e5+5;
struct Edge{
 int to,next;
}edge[MAXN<<1];
int n,c[MAXN],edge_cnt,head[MAXN];
int sz[MAXN],mson[MAXN],tot_sz,root,root_sz;
LL sum,cnt[MAXN],col[MAXN],ans[MAXN],base,num;
bool vis[MAXN];
void Insert(int u,int v){
 edge[++edge_cnt].to=v;
 edge[edge_cnt].next=head[u];
 head[u]=edge_cnt;
}
void find_root(int u,int fa){
 sz[u]=1;mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 find_root(v,u);
 sz[u]+=sz[v];
 mson[u]=max(mson[u],sz[v]);
 }

2026/01/14 07:33 9/11 静态点分治

CVBB ACM Team - https://wiki.cvbbacm.com/

 mson[u]=max(mson[u],tot_sz-sz[u]);
 if(mson[u]<root_sz){
 root=u;
 root_sz=mson[u];
 }
}
void dfs(int u,int fa){
 sz[u]=1,cnt[c[u]]++;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 dfs(v,u);
 sz[u]+=sz[v];
 }
 if(cnt[c[u]]==1){//该颜色第一次出现时，将其子树对根结点的答案的贡献算的该结点上
 sum+=sz[u];
 col[c[u]]+=sz[u];
 }
 cnt[c[u]]--;
}
void change(int u,int fa,int type){
 cnt[c[u]]++;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 change(v,u,type);
 }
 if(cnt[c[u]]==1){
 sum+=sz[u]*type;
 col[c[u]]+=sz[u]*type;
 }
 cnt[c[u]]--;
}
void cal(int u,int fa){
 cnt[c[u]]++;
 if(cnt[c[u]]==1){//该颜色对所有子代均产生贡献
 sum-=col[c[u]];
 num++;
 }
 ans[u]+=sum+base*num;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 cal(v,u);
 }
 if(cnt[c[u]]==1){
 sum+=col[c[u]];
 num--;

Last
update:
2020/05/24
17:57

2020-2021:teams:legal_string:jxm2001:
静态点分治

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E9%9D%99%E6%80%81%E7%82%B9%E5%88%86%E6%B2%BB&rev=1590314265

https://wiki.cvbbacm.com/ Printed on 2026/01/14 07:33

 }
 cnt[c[u]]--;
}
void clear(int u,int fa){
 col[c[u]]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v]||v==fa)
 continue;
 clear(v,u);
 }
}
void query(int u){
 sum=num=0;dfs(u,-1);//得到所有子树对根的贡献
 ans[u]+=sum;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 sum-=sz[v];col[c[u]]-=sz[v];
 cnt[c[u]]++;change(v,u,-1);cnt[c[u]]--;//消除该子树贡献
 base=sz[u]-sz[v];cal(v,u);
 sum+=sz[v];col[c[u]]+=sz[v];
 cnt[c[u]]++;change(v,u,1);cnt[c[u]]--;
 }
 clear(u,-1);
}
void solve(int u){
 vis[u]=true;query(u);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(vis[v])
 continue;
 tot_sz=sz[v];root_sz=MAXN;
 find_root(v,u);
 solve(root);
 }
}
int main()
{
 n=read_int();
 _for(i,0,n)
 c[i]=read_int();
 int u,v,w;
 _for(i,1,n){
 u=read_int()-1,v=read_int()-1;
 Insert(u,v);
 Insert(v,u);
 }
 root_sz=MAXN;

2026/01/14 07:33 11/11 静态点分治

CVBB ACM Team - https://wiki.cvbbacm.com/

 tot_sz=n;
 find_root(0,-1);
 solve(root);
 _for(i,0,n)
 enter(ans[i]);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E9%9D%99%E6%80%81%E7%82%B9%E5%88%86%E6%B2%BB&rev=1590314265

Last update: 2020/05/24 17:57

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:%E9%9D%99%E6%80%81%E7%82%B9%E5%88%86%E6%B2%BB&rev=1590314265

	静态点分治
	算法简介
	算法思想
	代码实现
	代码模板
	代码练习
	习题1
	习题2
	习题3
	习题4
	习题5

