
2026/01/14 06:17 1/7 2020牛客国庆集训派对

CVBB ACM Team - https://wiki.cvbbacm.com/

2020牛客国庆集训派对

Day 1

比赛链接

I、Saba1000kg

题意

给定一张图，q 个询问，每次询问只考虑图中 s_i 个点构成的连通块数。数据保证 $\sum s_i\le
10^5$。

题解

考虑分块。当 $s_i\lt k$ 时暴力 $O(s_i^2)$ 枚举所有点对同时维护并查集。 $s_i\ge k$ 时暴力 $O(m)$ 枚
举所有边同时维护并查集。

从均摊复杂度考虑，消耗每点 $\sum s_i$ 的复杂度为 $O(\max(\cfrac {s_i^2}{s_i}(s_i\lt k),\cfrac
m{s_i}(s_i\ge k))\log s_i)=O(\max (k,\cfrac mk)\log k)$。

取 $k=O(\sqrt m)$ 时总时间复杂度为 $O(\sum s_i\sqrt m\log m)$。

const int MAXN=1e5+5;
set<int>g[MAXN];
struct Edge{
 int u,v;
}edge[MAXN];
int p[MAXN],b[MAXN];
bool vis[MAXN];
int Find(int x){return x==p[x]?x:p[x]=Find(p[x]);}
void Merge(int x,int y){
 int xx=Find(x),yy=Find(y);
 if(xx!=yy)
 p[xx]=yy;
}
int main()
{
 int n=read_int(),m=read_int(),q=read_int(),limt=sqrt(m+10);
 _for(i,0,m){
 edge[i].u=read_int(),edge[i].v=read_int();
 g[edge[i].u].insert(edge[i].v);
 g[edge[i].v].insert(edge[i].u);
 }
 while(q--){

https://ac.nowcoder.com/acm/contest/7817

Last
update:
2020/10/07
21:26

2020-2021:teams:legal_string:jxm2001:contest:2020
牛客国庆集训派对

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:contest:2020%E7%89%9B%E5%AE%A2%E5%9B%BD%E5%BA%86%E9%9B%86%E8%AE%AD%E6%B4%BE%E5%AF%B9&rev=1602077165

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:17

 int sz=read_int(),ans=0;
 _for(i,0,sz){
 b[i]=read_int();
 vis[b[i]]=true;
 p[b[i]]=b[i];
 }
 if(sz<limt){
 _for(i,0,sz)
 _for(j,i,sz){
 if(g[b[i]].count(b[j]))
 Merge(b[i],b[j]);
 }
 }
 else{
 _for(i,0,m){
 if(vis[edge[i].u]&&vis[edge[i].v])
 Merge(edge[i].u,edge[i].v);
 }
 }
 _for(i,0,sz){
 ans+=(Find(b[i])==b[i]);
 vis[b[i]]=false;
 }
 enter(ans);
 }
 return 0;
}

Day 4

比赛链接

B、Arithmetic Progressions

题意

给定一个不可重集，求最大子集满足子集中数构成等差数列。

题解

先将不可重集排序得到序列 A，然后令 $\text{dp}(i,j)$ 表示等差数列最后一项为 a_j 且倒数第二项为
a_i 时的等差数列的长度。

考虑枚举 i，同时双指针 $k\lt i\lt j$ 查找满足 $a_k+a_j=a_i$ 的数，有状态转移
$\text{dp}(i,j)=\text{dp}(k,i)+1$。时间复杂度 $O(n^2)$。

https://ac.nowcoder.com/acm/contest/7831

2026/01/14 06:17 3/7 2020牛客国庆集训派对

CVBB ACM Team - https://wiki.cvbbacm.com/

const int MAXN=5e3+5;
int a[MAXN],dp[MAXN][MAXN];
int main()
{
 int n=read_int();
 _for(i,0,n)a[i]=read_int();
 sort(a,a+n);
 _for(i,0,n)_for(j,i+1,n)dp[i][j]=2;
 int ans=2;
 _for(i,0,n){
 int pos1=i-1,pos2=i+1;
 while(pos1>=0&&pos2<n){
 if(a[pos1]+a[pos2]<(a[i]<<1))pos2++;
 else if(a[pos1]+a[pos2]>(a[i]<<1))pos1--;
 else{
 dp[i][pos2]=max(dp[i][pos2],dp[pos1][i]+1);
 ans=max(ans,dp[i][pos2]);
 pos1--;pos2++;
 }
 }
 }
 enter(ans);
 return 0;
}

H、Colorful Tree

题意

给定一棵树，树上每点有一种颜色。接下来两种操作：

询问包含所有颜色为 c 的结点的最小子图的边数1.
将某点的颜色修改为 c2.

题解

将无根树转为以 1 为根的有根树，同时处理得到每个点的 dfs 序。

不难发现，对颜色为 c 的结点的最小子图的边数等价于所有该颜色结点所有 dfs 序相邻结点
距离加上 dfs 序最大最小两点距离和除以 2。

考虑 set 维护即可，时间复杂度 $O((n+q)\log n)$。

const int MAXN=1e5+5;
struct Edge{
 int to,next;
}edge[MAXN<<1];

Last
update:
2020/10/07
21:26

2020-2021:teams:legal_string:jxm2001:contest:2020
牛客国庆集训派对

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:contest:2020%E7%89%9B%E5%AE%A2%E5%9B%BD%E5%BA%86%E9%9B%86%E8%AE%AD%E6%B4%BE%E5%AF%B9&rev=1602077165

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:17

int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
namespace LCA{
 int d[MAXN],sz[MAXN],f[MAXN],dfn[MAXN],node_id[MAXN],dfs_t;
 int h_son[MAXN],mson[MAXN],p[MAXN];
 void dfs_1(int u,int fa,int depth){
dfn[u]=++dfs_t;sz[u]=1;f[u]=fa;d[u]=depth;mson[u]=0;node_id[dfs_t]=u;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)
 continue;
 dfs_1(v,u,depth+1);
 sz[u]+=sz[v];
 if(sz[v]>mson[u])
 h_son[u]=v,mson[u]=sz[v];
 }
 }
 void dfs_2(int u,int top){
 p[u]=top;
 if(mson[u])dfs_2(h_son[u],top);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==f[u]||v==h_son[u])
 continue;
 dfs_2(v,v);
 }
 }
 void init(int root){dfs_1(root,0,0);dfs_2(root,root);}
 int query_lca(int u,int v){
 while(p[u]!=p[v]){
 if(d[p[u]]<d[p[v]])swap(u,v);
 u=f[p[u]];
 }
 return d[u]<d[v]?u:v;
 }
 int query_dis(int u,int v){
 u=node_id[u],v=node_id[v];
 return d[u]+d[v]-2*d[query_lca(u,v)];
 }
};
typedef set<int>::iterator iter;
set<int>s[MAXN];
int c[MAXN];
LL ans[MAXN];
void del(int c,int u){
 iter it=s[c].find(u);
 int l=0,r=0;
 if(++it!=s[c].end())

2026/01/14 06:17 5/7 2020牛客国庆集训派对

CVBB ACM Team - https://wiki.cvbbacm.com/

 r=*it;
 if(--it!=s[c].begin())
 l=*(--it);
 if(l&&r)ans[c]+=LCA::query_dis(l,r);
 if(l)ans[c]-=LCA::query_dis(l,u);
 if(r)ans[c]-=LCA::query_dis(u,r);
 s[c].erase(u);
}
void add(int c,int u){
 s[c].insert(u);
 iter it=s[c].find(u);
 int l=0,r=0;
 if(++it!=s[c].end())
 r=*it;
 if(--it!=s[c].begin())
 l=*(--it);
 if(l&&r)ans[c]-=LCA::query_dis(l,r);
 if(l)ans[c]+=LCA::query_dis(l,u);
 if(r)ans[c]+=LCA::query_dis(u,r);
}
int main()
{
 int n=read_int();
 _for(i,1,n){
 int u=read_int(),v=read_int();
 Insert(u,v);Insert(v,u);
 }
 LCA::init(1);
 _rep(i,1,n){
 c[i]=read_int();
 add(c[i],LCA::dfn[i]);
 }
 int q=read_int();
 while(q--){
 char opt=get_char();
 if(opt=='Q'){
 int v=read_int();
 if(s[v].empty())
 enter(-1);
 else
 enter((ans[v]+LCA::query_dis(*s[v].begin(),*(--
s[v].end())))/2);
 }
 else{
 int u=read_int(),v=read_int();
 del(c[u],LCA::dfn[u]);
 add(v,LCA::dfn[u]);
 c[u]=v;
 }
 }
 return 0;

Last
update:
2020/10/07
21:26

2020-2021:teams:legal_string:jxm2001:contest:2020
牛客国庆集训派对

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:contest:2020%E7%89%9B%E5%AE%A2%E5%9B%BD%E5%BA%86%E9%9B%86%E8%AE%AD%E6%B4%BE%E5%AF%B9&rev=1602077165

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:17

}

Day 7

比赛链接

C、Expect to wait

题意

给定 n 个事件，时间分两种：

t 时刻有 k 人借车1.
t 时刻新加入 k 辆车2.

接下来 q 个询问，每次询问当初始时有 b 辆车时所有人的等待时间和。

题解

先假设初始时没有车，考虑根据初始事件构造“时间 $-$ 等待人数”图，则答案恰好为该图形围成的面积。

考虑初始时有 b 辆车的情况，易知这等价于将图形向下移动 b 个单位，同时删去小于 0 的部分。

不难发现这同时等价于直线 $y=b$ 与原图形上方曲线围成面积。考虑将询问根据 b 排序，利用扫描线
法维护答案，时间复杂度 $O(n\log n)$。

需要注意无解情况的特判。另外发现也可以吉司机线段树区间取 \max 再询问 sum 无脑维护。

const int MAXN=1e5+5;
struct Seg{
 int len,v;
 bool operator < (const Seg &b)const{
 return v>b.v;
 }
}seg[MAXN];
struct Query{
 int v,idx;
 bool operator < (const Query &b)const{
 return v>b.v;
 }
}que[MAXN];
LL ans[MAXN];
int tim[MAXN],k[MAXN];
int main()
{
 int n=read_int(),q=read_int();
 _rep(i,1,n){

https://ac.nowcoder.com/acm/contest/7858

2026/01/14 06:17 7/7 2020牛客国庆集训派对

CVBB ACM Team - https://wiki.cvbbacm.com/

 char c=get_char();
 tim[i]=read_int(),k[i]=read_int();
 if(c=='+')k[i]=-k[i];
 }
 int st=0;
 _for(i,1,n){
 seg[i].len=tim[i+1]-tim[i];
 seg[i].v=st+=k[i];
 }
 st+=k[n];
 st=max(0,st);
 sort(seg+1,seg+n);
 _for(i,0,q){
 que[i].v=read_int();
 que[i].idx=i;
 }
 sort(que,que+q);
 int pos=1,slen=0;
 LL sum=0;
 _for(i,0,q){
 if(que[i].v<st){
 ans[que[i].idx]=-1;
 continue;
 }
 if(i)sum+=1LL*(que[i-1].v-que[i].v)*slen;
 while(pos<n&&que[i].v<seg[pos].v){
 slen+=seg[pos].len;
 sum+=1LL*(seg[pos].v-que[i].v)*seg[pos].len;
 pos++;
 }
 ans[que[i].idx]=sum;
 }
 _for(i,0,q){
 if(~ans[i])
 enter(ans[i]);
 else
 puts("INFINITY");
 }
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:contest:2020%E7%89%9B%E5%AE%A2%E5%9B%BD%E5%BA%86%E9%9B%86%E8%AE%AD%E6%B4%BE%E5%AF%B9&rev=1602077165

Last update: 2020/10/07 21:26

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:contest:2020%E7%89%9B%E5%AE%A2%E5%9B%BD%E5%BA%86%E9%9B%86%E8%AE%AD%E6%B4%BE%E5%AF%B9&rev=1602077165

	2020牛客国庆集训派对
	Day 1
	I、Saba1000kg
	题意
	题解

	Day 4
	B、Arithmetic Progressions
	题意
	题解

	H、Colorful Tree
	题意
	题解

	Day 7
	C、Expect to wait
	题意
	题解

