CodeChef February Challenge 2021

比赛链接

Multiple Games

题意

给定严格递增的正整数序列 \$A_1,A_2\cdots A_n\$□保证 \$A_i+A_1\ge A_{i+1}\$□一开始由我方选定一个 \$G\$□使得 \$0\le G\le M\$□

问必胜场次最多有几场。

颞解

首先给出两个博弈游戏等价的定义:对同一个状态(本题为当前石头数),两个博弈游戏要么都是必胜状态要么都是必败状态。

另外假设每次可以拿的石头为 \$[I,r]\$ 个,则必胜状态为 \$G\bmod (I+r)\ge I\$□

接下来给出两个条件:

- 每次可以拿 \$S=\{a_1,a_2\cdots a_k\}\$ 个石头的游戏等价于每次可以拿 \$[\min S,\max S]\$ 个石头的游戏。
- 2. 对任意 \$a_i,a_j\in S\$[]若 \$a_i+\min S\lt a_j\$[]则存在 \$a_k\in S\$[]使得 \$a_i\lt a_k\lt a_j\$[]

当条件一成立时,假设存在 \$a_i+a_1\lt a_j\$[]且不存在 \$a_k\in S\$[]使得 \$a_i\lt a_k\lt a_j\$ 的情况。

于是有 \$j=i+1\$□即 \$a_i+a_1\lt a_{i+1}\$□取 \$G\bmod (a_1+a_k)=a_1+a_i\$□根据条件一 \$G\$ 是必胜状态。

于是如果选取 \$a 1\sim a i\$□则 \$a 1\le G'\bmod (a 1+a k)\le a I\$□根据条件一 \$G'\$ 是必胜状态。

如果选取 \$a_{i+1}\sim a_k\$[]则 \$G'\bmod (a_1+a_k)\gt 2a_1+a_i\$[]根据条件一 \$G'\$ 是必胜状态。

于是 \$G\$ 是必败状态,矛盾。于是充分性证毕。

当条件二成立时,首先考虑 \$0\le G\lt a_1+a_k\$□易知 \$0\lt G\lt a_1\$ 是必败状态。

当 \$a_i\le G\lt a_{i+1}\$ 时,取 \$a_i\$ 个石头,根据条件二,有 \$a_i+a_1\ge a_{i+1}\$□于是 \$G'=G-a_i\lt a_1\$ 是必败状态。

于是 \$a_1\le G\lt a_k\$ 是必胜状态。当 \$a_k\le G\lt a_1+a_k\$ 时取 \$a_k\$ 个石头有 \$G'\lt a_i\$□于是 \$G\$ 也是必胜状态。

于是 \$0\le G\lt a 1+a k\$ 时必胜状态为 \$a 1\le G\lt a 1+a k\$[]

数学归纳法设 \$k(a 1+a k)\le G\lt (k+1)(a 1+a k)\$ 满足条件一。

当 \$(k+1)(a_1+a_k)\le G\lt (k+1)(a_1+a_k)+a_1\$ 时,任意取石头 \$a_1\sim a_k\$[]

发现总有 \$k(a_1+a_k)+a_1\le G'\lt (k+1)(a_1+a_k)\$ 全是必胜状态,于是 \$G\$ 是必败状态。

当 \$(k+1)(a_1+a_k)+a_1\le G\lt (k+2)(a_1+a_k)\$ 类比 \$a_1\le G\lt a_1+a_k\$ 的取法即可到达必败状态,于是 \$G\$ 是必胜状态。必要性证毕。

回到原题,现在只需要考虑选取 \$G\$ 使得其满足尽可能多的 \$G\bmod (a_{l_i}+a_{r_i})\ge a_{l_i}\$ 即可。

考虑维护 $$0\le G\le m$$ 的答案数组。对 $a_{l_i}+a_{r_i}\le sqrt m$$ 的询问,可以转化为不超过 sO(sqrt m) 次区间加操作。

利用差分和前缀和可以 \$O(\sqrt m)\$ 处理每个上面询问。

对 $a_{l_i}+a_{r_i}\leq m$ 的询问,考虑用 $o(\sqrt m)$ 个长度不超过 $o(\sqrt m)$ 的数组 c 维护贡献。

对每个上面询问使得 \$c(l_i+r_i)(l_i\sim r_i)\$ 加一。

最后从 \$0\sim m\$ 扫描一遍答案数组,同时加上这 \$O(\sqrt m)\$ 的数组的当前位置贡献,然后每个数组指针移动一位。

总时间复杂度 \$O((m+q)\sqrt m)\$□

```
const int MAXN=2e5+5,MAXM=500;
int a[MAXN],s[MAXN],c[MAXM][MAXM],p[MAXM];
int main()
    int T=read int();
    while(T--){
        int n=read int(),q=read int(),m=read int(),blk=sqrt(m)+1;
        rep(i,0,m)s[i]=0;
        for(i,1,blk){
            _for(j,0,i)c[i][j]=0;
            p[i]=0;
         rep(i,1,n)a[i]=read int();
        while(q--){
            int l=read int(),r=read int();
            if(a[l]+a[r]>=blk){
                 int pos=a[l];
                 while(pos<=m) {</pre>
                     s[pos]++;
                     if(pos+a[r]<=m)s[pos+a[r]]--;</pre>
                     pos+=a[l]+a[r];
                 }
```

https://wiki.cvbbacm.com/ Printed on 2025/11/29 16:08

From:

https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:

 $https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:contest:cf_feb21\&rev=1613392692$

Last update: 2021/02/15 20:38