
2026/01/14 02:17 1/15 LCT

CVBB ACM Team - https://wiki.cvbbacm.com/

动态树

算法简介

动态树简称 LCT ，是一种动态维护森林连通性、路径信息的数据结构，时间复杂度为 $O\left(n\log
n\right)$

算法思想

LCT 将树上路径分为实链和虚链，每个非叶结点仅向他的一个儿子结点连实边，其余儿子连虚边。

每个实链用一棵 splay 保存，同一棵树的 splay 之间靠虚边连接，每个 splay 维护一个深度递增的结点序
列。

每棵 splay 树的根结点的父结点(注意，不是原树的父结点)设为这个 splay 深度最小的结点的在原树中的
父节点。

LCT 的核心操作为 $\text{access}(x)$。

$\text{access}(x)$ 的目的是将 x 结点到根结点的路径变为一条实链，便于后续操作，方法很简单，不
断向上修改父子关系即可。

我们还想得到两个非根结点的路径信息，我们可以先将其中一个结点变为根结点，再使用
access 操作。

将一个结点变为根结点即为 $\text{makeroot}(x)$ 操作，方法为先 $\text{access}(x)$ ，再颠倒这条实链。

颠倒实链可以考虑 $\text{splay}(x)$ ，x 是 splay 中深度最小的点，无右儿子。

因此交换 x 左右儿子， x 无左儿子，成为深度最大的点，最后打上懒标记即可。

考虑到 LCT 维护的是森林，为了判断连通性，我们还需要 $\text{findroot}(x)$ ，即得到结点 x 所在原
树的根结点。

方法为先 $\text{access}(x)$ ，便可以得到结点 x 到根结点的路径。

考虑到原树的根结点为深度最小的点，我们只需要 $\text{splay}(x)$ ，然后从结点 x 出发不断访问右节
点即可，但要注意下放懒标记。

有了这些基本操作，便可以实现树上的连边、删边、两点间的路径信息维护等操作了。

代码模板

struct Link_Cut_tree{
 int ch[MAXN][2],fa[MAXN],w[MAXN],s[MAXN];
 int Stack[MAXN],top;
 bool flip[MAXN];
 #define lch(k) ch[k][0]

Last
update:
2021/07/03
21:52

2020-2021:teams:legal_string:jxm2001:lct https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:17

 #define rch(k) ch[k][1]
 void build(int *a,int n){
 _rep(i,1,n){
 ch[i][0]=ch[i][1]=fa[i]=0;
 s[i]=w[i]=a[i];
 flip[i]=false;
 }
 }
 void push_up(int k){
 s[k]=s[lch(k)]^s[rch(k)]^w[k];//自定义
 }
 void push_flip(int k){
 swap(lch(k),rch(k));
 flip[k]^=1;
 }
 void push_down(int k){
 if(flip[k]){
 push_flip(lch(k));
 push_flip(rch(k));
 flip[k]=0;
 }
 }
 bool isroot(int k){
 return lch(fa[k])!=k&&rch(fa[k])!=k;
 }
 void rotate(int k){
 int pa=fa[k],ga=fa[pa],dir;
 dir=ch[pa][0]==k?0:1;
 if(!isroot(pa))ch[ga][ch[ga][0]==pa?0:1]=k;
 fa[k]=ga,fa[pa]=k;
 if(ch[k][dir^1])fa[ch[k][dir^1]]=pa;
 ch[pa][dir]=ch[k][dir^1],ch[k][dir^1]=pa;
 push_up(pa);
 }
 void splay(int k){
 Stack[top=1]=k;
 for(int i=k;!isroot(i);i=fa[i])Stack[++top]=fa[i];
 while(top)push_down(Stack[top--]);
 while(!isroot(k)){
 int pa=fa[k],ga=fa[pa];
 if(!isroot(pa))rotate((ch[pa][0]==k)^(ch[ga][0]==pa)?k:pa);
 rotate(k);
 }
 push_up(k);
 }
 void access(int k){
 for(int t=0;k;t=k,k=fa[k]){
 splay(k);
 ch[k][1]=t;

2026/01/14 02:17 3/15 LCT

CVBB ACM Team - https://wiki.cvbbacm.com/

 push_up(k);
 }
 }
 void makeroot(int k){
 access(k);
 splay(k);
 push_flip(k);
 }
 int findroot(int k){
 access(k);splay(k);
 push_down(k);
 while(ch[k][0])push_down(k=ch[k][0]);
 splay(k);
 return k;
 }
 void split(int u,int v){
 makeroot(u);
 access(v);
 splay(v);
 }
 void link(int u,int v){
 makeroot(u);
 if(findroot(v)!=u)fa[u]=v;
 }
 void cut(int u,int v){
 split(u,v);
 if(ch[v][0]==u&&ch[u][1]==0){
 ch[v][0]=fa[u]=0;
 push_up(v);
 }
 }
 void change(int k,int v){
 access(k);splay(k);
 w[k]=v;
 push_up(k);
 }
};

代码练习

路径信息维护

例题一

洛谷p3690

给定 n 个点和权值，接下来 m 个操作。

https://www.luogu.com.cn/problem/P3690
https://www.luogu.com.cn/problem/P3690

Last
update:
2021/07/03
21:52

2020-2021:teams:legal_string:jxm2001:lct https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:17

操作 0 ：询问 x 到 y 路径的权值的异或和，保证 x 与 y 已经连通。

操作 1 ：连接 x 与 y ，若 x 与 y 已经连通，则无视这个操作。

操作 2 ：删除 x 与 y 的连边，若 x 与 y 无连边，则无视这个操作。

操作 3 ：把结点 x 的权值改为 y。

一道LCT裸题，直接上代码。

const int MAXN=1e5+5;
struct Link_Cut_tree{
 int ch[MAXN][2],fa[MAXN],w[MAXN],s[MAXN];
 int Stack[MAXN],top;
 bool flip[MAXN];
 #define lch(k) ch[k][0]
 #define rch(k) ch[k][1]
 void build(int *a,int n){
 _rep(i,1,n){
 ch[i][0]=ch[i][1]=fa[i]=0;
 s[i]=w[i]=a[i];
 flip[i]=false;
 }
 }
 void push_up(int k){
 s[k]=s[lch(k)]^s[rch(k)]^w[k];
 }
 void push_flip(int k){
 swap(lch(k),rch(k));
 flip[k]^=1;
 }
 void push_down(int k){
 if(flip[k]){
 push_flip(lch(k));
 push_flip(rch(k));
 flip[k]=0;
 }
 }
 bool isroot(int k){
 return lch(fa[k])!=k&&rch(fa[k])!=k;
 }
 void rotate(int k){
 int pa=fa[k],ga=fa[pa],dir;
 dir=ch[pa][0]==k?0:1;
 if(!isroot(pa))ch[ga][ch[ga][0]==pa?0:1]=k;
 fa[k]=ga,fa[pa]=k;
 if(ch[k][dir^1])fa[ch[k][dir^1]]=pa;
 ch[pa][dir]=ch[k][dir^1],ch[k][dir^1]=pa;
 push_up(pa);

2026/01/14 02:17 5/15 LCT

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 void splay(int k){
 Stack[top=1]=k;
 for(int i=k;!isroot(i);i=fa[i])Stack[++top]=fa[i];
 while(top)push_down(Stack[top--]);
 while(!isroot(k)){
 int pa=fa[k],ga=fa[pa];
 if(!isroot(pa))rotate((ch[pa][0]==k)^(ch[ga][0]==pa)?k:pa);
 rotate(k);
 }
 push_up(k);
 }
 void access(int k){
 for(int t=0;k;t=k,k=fa[k]){
 splay(k);
 ch[k][1]=t;
 push_up(k);
 }
 }
 void makeroot(int k){
 access(k);
 splay(k);
 push_flip(k);
 }
 int findroot(int k){
 access(k);splay(k);
 push_down(k);
 while(ch[k][0])push_down(k=ch[k][0]);
 splay(k);
 return k;
 }
 void split(int u,int v){
 makeroot(u);
 access(v);
 splay(v);
 }
 void link(int u,int v){
 makeroot(u);
 if(findroot(v)!=u)fa[u]=v;
 }
 void cut(int u,int v){
 split(u,v);
 if(ch[v][0]==u&&ch[u][1]==0){
 ch[v][0]=fa[u]=0;
 push_up(v);
 }
 }
 void change(int k,int v){
 access(k);splay(k);
 w[k]=v;
 push_up(k);

Last
update:
2021/07/03
21:52

2020-2021:teams:legal_string:jxm2001:lct https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:17

 }
}LCT;
int a[MAXN];
int main()
{
 int n=read_int(),m=read_int(),opt,u,v;
 _rep(i,1,n)
 a[i]=read_int();
 LCT.build(a,n);
 _rep(i,1,m){
 opt=read_int(),u=read_int(),v=read_int();
 if(opt==0){
 LCT.split(u,v);
 enter(LCT.s[v]);
 }
 else if(opt==1)
 LCT.link(u,v);
 else if(opt==2)
 LCT.cut(u,v);
 else
 LCT.change(u,v);
 }
 return 0;
}

例题二

洛谷p1501

给定一棵 n 个结点的树，每个结点初始权值为 1 ，接下来 q 个操作：

操作 1 ：将 u 到 v 路径上所有点权值加上 c。

操作 2 ：删除 u_1 与 v_1 的连边，添加 u_2 与 v_2 的连边，保证操作后仍然是一棵树。

操作 3 ：将 u 到 v 路径上所有点权值乘上 c。

操作 4 ：查询 u 到 v 路径上权值和。

一道简单LCT练手题，多加几个懒标记即可。

const int MAXN=1e5+5,Mod=51061;
struct Link_Cut_tree{
 int ch[MAXN][2],fa[MAXN],sz[MAXN],w[MAXN],s[MAXN];
 int mul_tag[MAXN],add_tag[MAXN];
 int Stack[MAXN],top;
 bool flip[MAXN];
 #define lch(k) ch[k][0]

https://www.luogu.com.cn/problem/P1501
https://www.luogu.com.cn/problem/P1501

2026/01/14 02:17 7/15 LCT

CVBB ACM Team - https://wiki.cvbbacm.com/

 #define rch(k) ch[k][1]
 void node_init(int k,int v){
 ch[k][0]=ch[k][1]=fa[k]=0;
 sz[k]=1;
 w[k]=s[k]=v;
 mul_tag[k]=1,add_tag[k]=0,flip[k]=false;
 }
 void push_up(int k){
 s[k]=(s[lch(k)]+s[rch(k)]+w[k])%Mod;
 sz[k]=sz[lch(k)]+sz[rch(k)]+1;
 }
 void push_flip(int k){
 swap(lch(k),rch(k));
 flip[k]^=1;
 }
 void push_mul(int k,int v){
 s[k]=1LL*s[k]*v%Mod;
 w[k]=1LL*w[k]*v%Mod;
 add_tag[k]=1LL*add_tag[k]*v%Mod;
 mul_tag[k]=1LL*mul_tag[k]*v%Mod;
 }
 void push_add(int k,int v){
 s[k]=(s[k]+1LL*sz[k]*v)%Mod;
 w[k]=(w[k]+v)%Mod;
 add_tag[k]=(add_tag[k]+v)%Mod;
 }
 void push_down(int k){
 if(flip[k]){
 push_flip(lch(k));
 push_flip(rch(k));
 flip[k]=0;
 }
 if(mul_tag[k]!=1){
 push_mul(lch(k),mul_tag[k]);
 push_mul(rch(k),mul_tag[k]);
 mul_tag[k]=1;
 }
 if(add_tag[k]){
 push_add(lch(k),add_tag[k]);
 push_add(rch(k),add_tag[k]);
 add_tag[k]=0;
 }
 }
 bool isroot(int k){
 return lch(fa[k])!=k&&rch(fa[k])!=k;
 }
 void rotate(int k){
 int pa=fa[k],ga=fa[pa],dir;
 dir=ch[pa][0]==k?0:1;
 if(!isroot(pa))ch[ga][ch[ga][0]==pa?0:1]=k;
 fa[k]=ga,fa[pa]=k;

Last
update:
2021/07/03
21:52

2020-2021:teams:legal_string:jxm2001:lct https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:17

 if(ch[k][dir^1])fa[ch[k][dir^1]]=pa;
 ch[pa][dir]=ch[k][dir^1],ch[k][dir^1]=pa;
 push_up(pa);
 }
 void splay(int k){
 Stack[top=1]=k;
 for(int i=k;!isroot(i);i=fa[i])Stack[++top]=fa[i];
 while(top)push_down(Stack[top--]);
 while(!isroot(k)){
 int pa=fa[k],ga=fa[pa];
 if(!isroot(pa))rotate((ch[pa][0]==k)^(ch[ga][0]==pa)?k:pa);
 rotate(k);
 }
 push_up(k);
 }
 void access(int k){
 for(int t=0;k;t=k,k=fa[k]){
 splay(k);
 ch[k][1]=t;
 push_up(k);
 }
 }
 void makeroot(int k){
 access(k);
 splay(k);
 push_flip(k);
 }
 int findroot(int k){
 access(k);splay(k);
 push_down(k);
 while(ch[k][0])push_down(k=ch[k][0]);
 splay(k);
 return k;
 }
 void split(int u,int v){
 makeroot(u);
 access(v);
 splay(v);
 }
 void link(int u,int v){
 makeroot(u);
 if(findroot(v)!=u)fa[u]=v;
 }
 void cut(int u,int v){
 split(u,v);
 if(ch[v][0]==u&&ch[u][1]==0){
 ch[v][0]=fa[u]=0;
 push_up(v);
 }

2026/01/14 02:17 9/15 LCT

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 void update_add(int u,int v,int val){
 split(u,v);
 push_add(v,val);
 }
 void update_mul(int u,int v,int val){
 split(u,v);
 push_mul(v,val);
 }
 int query_sum(int u,int v){
 split(u,v);
 return s[v];
 }
}LCT;
int main()
{
 int n=read_int(),m=read_int();
 _rep(i,1,n)
 LCT.node_init(i,1);
 _for(i,1,n){
 int u=read_int(),v=read_int();
 LCT.link(u,v);
 }
 while(m--){
 char opt=get_char();
 int u=read_int(),v=read_int();
 if(opt=='+')
 LCT.update_add(u,v,read_int());
 else if(opt=='-'){
 LCT.cut(u,v);
 u=read_int(),v=read_int();
 LCT.link(u,v);
 }
 else if(opt=='*')
 LCT.update_mul(u,v,read_int());
 else
 enter(LCT.query_sum(u,v));
 }
 return 0;
}

生成树维护

例题一

洛谷p3366

求最小生成树。

考虑 splay 维护一条链上的最长边，如果新加入边 (u,v) 导致成环，且原树中 $u\to v$ 路径

https://www.luogu.com.cn/problem/P3366
https://www.luogu.com.cn/problem/P3366

Last
update:
2021/07/03
21:52

2020-2021:teams:legal_string:jxm2001:lct https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:17

上的最长边大于新加入的边。

则删去最长边再加入新加入边。然后发现最长边比较难直接维护，于是考虑将边也是为新节点，点权等于
边权，原图中的点的点权为 0。

splay 维护最大点权以及点权最大的点的编号即可。

关于删边操作直接 $\text{split}(u,v)$ 后找到最长边对应的点的编号，然后将该编号 splay 到根
节点。

不难发现该节点在 splay 中的左树恰好为 $u\to v$ 链删去该边后的一半，而右树代表另一半链。

同时 split 后 u 为原树中的根节点，于是将该编号在 splay 中的左右儿子的父节点置
0 即可分裂为两棵树，然后再加入新边即可。

注意空间要开 $O(n+m)$。

const int MAXN=1e5+5;
struct Link_Cut_tree{
 int ch[MAXN][2],fa[MAXN],node_cnt;
 pair<int,int> w[MAXN],s[MAXN];
 int Stack[MAXN],top;
 bool flip[MAXN];
 #define lch(k) ch[k][0]
 #define rch(k) ch[k][1]
 int node_init(int v){
 int k=++node_cnt;
 w[k]=s[k]=make_pair(v,k);
 return k;
 }
 void push_up(int k){
 s[k]=max(max(s[lch(k)],s[rch(k)]),w[k]);
 }
 void push_flip(int k){
 swap(lch(k),rch(k));
 flip[k]^=1;
 }
 void push_down(int k){
 if(flip[k]){
 push_flip(lch(k));
 push_flip(rch(k));
 flip[k]=0;
 }
 }
 bool isroot(int k){
 return lch(fa[k])!=k&&rch(fa[k])!=k;
 }
 void rotate(int k){
 int pa=fa[k],ga=fa[pa],dir;
 dir=ch[pa][0]==k?0:1;

2026/01/14 02:17 11/15 LCT

CVBB ACM Team - https://wiki.cvbbacm.com/

 if(!isroot(pa))ch[ga][ch[ga][0]==pa?0:1]=k;
 fa[k]=ga,fa[pa]=k;
 if(ch[k][dir^1])fa[ch[k][dir^1]]=pa;
 ch[pa][dir]=ch[k][dir^1],ch[k][dir^1]=pa;
 push_up(pa);
 }
 void splay(int k){
 Stack[top=1]=k;
 for(int i=k;!isroot(i);i=fa[i])Stack[++top]=fa[i];
 while(top)push_down(Stack[top--]);
 while(!isroot(k)){
 int pa=fa[k],ga=fa[pa];
 if(!isroot(pa))rotate((ch[pa][0]==k)^(ch[ga][0]==pa)?k:pa);
 rotate(k);
 }
 push_up(k);
 }
 void access(int k){
 for(int t=0;k;t=k,k=fa[k]){
 splay(k);
 ch[k][1]=t;
 push_up(k);
 }
 }
 void makeroot(int k){
 access(k);
 splay(k);
 push_flip(k);
 }
 int findroot(int k){
 access(k);splay(k);
 push_down(k);
 while(ch[k][0])push_down(k=ch[k][0]);
 splay(k);
 return k;
 }
 void split(int u,int v){
 makeroot(u);
 access(v);
 splay(v);
 }
 void link(int u,int v){
 makeroot(u);
 if(findroot(v)!=u)fa[u]=v;
 }
 void add_edge(int u,int v,int val,LL &ans){
 makeroot(u);
 if(findroot(v)!=u){
 int k=node_init(val);
 link(u,k);
 link(v,k);

Last
update:
2021/07/03
21:52

2020-2021:teams:legal_string:jxm2001:lct https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:17

 ans+=val;
 }
 split(u,v);
 if(s[v].first>val){
 int k0=s[v].second,k1=node_init(val);
 ans-=s[v].first-val;
 splay(s[v].second);
 fa[lch(k0)]=fa[rch(k0)]=0;
 link(u,k1);
 link(v,k1);
 }
 }
}LCT;
int a[MAXN];
int main()
{
 int n=read_int(),m=read_int();
 LL ans=0;
 _rep(i,1,n)
 LCT.node_init(0);
 while(m--){
 int u=read_int(),v=read_int(),w=read_int();
 LCT.add_edge(u,v,w,ans);
 }
 enter(ans);
 return 0;
}

例题二

洛谷p4234

定义生成树的权值为生成树权值最大的边减去权值最小的边，问权值最小的生成树。

考虑从大到小加入边，当遇到环时删去权值最大的边。每次加入边后如果图构成树则计算当前树上最大边
减去最小边。

显然这是类似单调队列的贪心做法，但是本人暂时想不出正确性的证明。

const int MAXM=2e5+5,MAXN=5e4+MAXM,inf=1e9;
int n,m,blk_cnt;
struct Edge{
 int u,v,w;
 bool del;
 bool operator < (const Edge &b)const{
 return w>b.w;
 }
}edge[MAXM];

https://www.luogu.com.cn/problem/P4234
https://www.luogu.com.cn/problem/P4234

2026/01/14 02:17 13/15 LCT

CVBB ACM Team - https://wiki.cvbbacm.com/

struct Link_Cut_tree{
 int ch[MAXN][2],fa[MAXN],node_cnt;
 pair<int,int> w[MAXN],s[MAXN];
 int Stack[MAXN],top;
 bool flip[MAXN];
 #define lch(k) ch[k][0]
 #define rch(k) ch[k][1]
 int node_init(int v){
 int k=++node_cnt;
 w[k]=s[k]=make_pair(v,k);
 return k;
 }
 void push_up(int k){
 s[k]=max(max(s[lch(k)],s[rch(k)]),w[k]);
 }
 void push_flip(int k){
 swap(lch(k),rch(k));
 flip[k]^=1;
 }
 void push_down(int k){
 if(flip[k]){
 push_flip(lch(k));
 push_flip(rch(k));
 flip[k]=0;
 }
 }
 bool isroot(int k){
 return lch(fa[k])!=k&&rch(fa[k])!=k;
 }
 void rotate(int k){
 int pa=fa[k],ga=fa[pa],dir;
 dir=ch[pa][0]==k?0:1;
 if(!isroot(pa))ch[ga][ch[ga][0]==pa?0:1]=k;
 fa[k]=ga,fa[pa]=k;
 if(ch[k][dir^1])fa[ch[k][dir^1]]=pa;
 ch[pa][dir]=ch[k][dir^1],ch[k][dir^1]=pa;
 push_up(pa);
 }
 void splay(int k){
 Stack[top=1]=k;
 for(int i=k;!isroot(i);i=fa[i])Stack[++top]=fa[i];
 while(top)push_down(Stack[top--]);
 while(!isroot(k)){
 int pa=fa[k],ga=fa[pa];
 if(!isroot(pa))rotate((ch[pa][0]==k)^(ch[ga][0]==pa)?k:pa);
 rotate(k);
 }
 push_up(k);
 }
 void access(int k){
 for(int t=0;k;t=k,k=fa[k]){

Last
update:
2021/07/03
21:52

2020-2021:teams:legal_string:jxm2001:lct https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:17

 splay(k);
 ch[k][1]=t;
 push_up(k);
 }
 }
 void makeroot(int k){
 access(k);
 splay(k);
 push_flip(k);
 }
 int findroot(int k){
 access(k);splay(k);
 push_down(k);
 while(ch[k][0])push_down(k=ch[k][0]);
 splay(k);
 return k;
 }
 void split(int u,int v){
 makeroot(u);
 access(v);
 splay(v);
 }
 void link(int u,int v){
 makeroot(u);
 if(findroot(v)!=u)fa[u]=v;
 }
 void add_edge(int u,int v,int val){
 if(u==v){
 int k=++node_cnt;
 edge[k-n-1].del=true;
 return;
 }
 makeroot(u);
 if(findroot(v)!=u){
 int k=node_init(val);
 link(u,k);
 link(v,k);
 blk_cnt--;
 return;
 }
 split(u,v);
 int k0=s[v].second,k1=node_init(val);
 splay(k0);
 fa[lch(k0)]=fa[rch(k0)]=0;
 edge[k0-n-1].del=true;
 link(u,k1);
 link(v,k1);
 }
}LCT;

2026/01/14 02:17 15/15 LCT

CVBB ACM Team - https://wiki.cvbbacm.com/

int main()
{
 n=read_int(),m=read_int(),blk_cnt=n;
 _for(i,0,n)
 LCT.node_init(0);
 _for(i,0,m){
 edge[i].u=read_int();
 edge[i].v=read_int();
 edge[i].w=read_int();
 }
 sort(edge,edge+m);
 int pos=0,ans=inf;
 _for(i,0,m){
 LCT.add_edge(edge[i].u,edge[i].v,edge[i].w);
 if(blk_cnt==1){
 while(edge[pos].del)pos++;
 ans=min(ans,edge[pos].w-edge[i].w);
 }
 }
 enter(ans);
 return 0;
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

Last update: 2021/07/03 21:52

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:lct&rev=1625320370

	动态树
	算法简介
	算法思想
	代码模板
	代码练习
	路径信息维护
	例题一
	例题二

	生成树维护
	例题一
	例题二

