
2026/02/02 20:59 1/2 结论 1

CVBB ACM Team - https://wiki.cvbbacm.com/

结论

1、树上最远距离

树上到每个点距离最远的距离一定为树上一条直径的两个端点之一。

分别从两个端点开始 dfs 即可 $O(n)$ 求取每个点的树上最远点。

证明见 链接

或者可以考虑树形 dp，第一次 dfs 维护每个节点子树方向上的最远距离和次远距离。

第二次 dfs 维护每个节点祖先方向上的最远距离，答案即为子树方向上的最远距离和祖先方向上
的最远距离的较大者。

int dp[MAXN][3],hson[MAXN],dis[MAXN];
void dfs1(int u,int fa){
 dp[u][0]=dp[u][1]=dp[u][2];
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)continue;
 dfs1(v,u);
 if(dp[v][0]+edge[i].w>dp[u][0]){
 hson[u]=v;
 dp[u][1]=dp[u][0];
 dp[u][0]=dp[v][0]+edge[i].w;
 }
 else if(dp[v][0]+edge[i].w>dp[u][1])
 dp[u][1]=dp[v][0]+edge[i].w;
 }
}
void dfs2(int u,int fa){
 dis[u]=max(dp[u][0],dp[u][2]);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==fa)continue;
 if(v==hson[u])
 dp[v][2]=edge[i].w+max(dp[u][1],dp[u][2]);
 else
 dp[v][2]=edge[i].w+max(dp[u][0],dp[u][2]);
 dfs2(v,u);
 }
}

2、树的遍历代价

给定一棵树，树上有一些关键点，问任意从树上选一点出发，遍历所有关键点后回到起点的最短路径长度

https://oi-wiki.org/graph/tree-diameter/

Last
update:
2020/07/31
20:35

2020-2021:teams:legal_string:jxm2001:other:
结论_1

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E7%BB%93%E8%AE%BA_1&rev=1596198929

https://wiki.cvbbacm.com/ Printed on 2026/02/02 20:59

为多少。

建立虚树。先考虑虚树上的叶子结点 v，v 必为关键节点，设 $u=fa(v)$。

发现不管 v 是否为起点，都需要遍历 $edge(u,v)$ 两次(出发与返回)。

而要达到 v 必须达到 u，于是考虑把 v 删去，把 u 作为关键节点，答案加上 $2\times
edge(u,v)$，继续重复上述过程。

最终发现答案为虚树上边权和的两倍。

设关键点按原树上的 dfs 序排序后为 $u_1,u_2,u_3\cdots u_k$。

通过画图观察发现虚树上边权和的两倍恰好等于
$\text{dis}(u_1,u_2)+\text{dis}(u_2,u_3)+\cdots\text{dis}(u_{k-1},u_k)+\text{dis}(u_k,u_1)$。

而加入一个点 v 作为新关键点时只需要查询 dfs 序与 v 相邻的两个点，记为
u_i,u_{i+1}。

则答案增量为 $\text{dis}(u_i,v)+\text{dis}(v,u_{i+1})-\text{dis}(u_i,u_{i+1})$。

删除一个关键点操作类似。

3、 连通性

无向图的边双连通分量可以通过给所有边定向转化为强连通分量。

必要性证明：

如果图中存在桥，则无论怎么给桥定向，图最终均不能成为强连通分量。

充分性证明：

如果一个图是边双连通分量，考虑任选两个点，于是从其中一个点出发必有两条边不重复的路径到达另一
个点。

考虑将这两条路径定向，使之构成一个有向环，然后缩点，继续重复上述操作，最终可以将整个图缩成一
个点，即整个图变成一个强连通分量。

注意路径定向时只定向缩点间的路径，缩点内部点可以互达，所以缩点内部路径不需要再次定向，于是也
不会产生矛盾。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E7%BB%93%E8%AE%BA_1&rev=1596198929

Last update: 2020/07/31 20:35

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E7%BB%93%E8%AE%BA_1&rev=1596198929

	结论
	1、树上最远距离
	2、树的遍历代价
	3、 连通性

