
2026/01/14 02:23 1/13 错题集 2

CVBB ACM Team - https://wiki.cvbbacm.com/

错题集 2

1、Ancient Distance

链接

题意

给一个有根树，在树上选择 k 个关键点(根必须选)，使得所有点到最近关键祖先(可以是自己)距离的最
大值最小。

求出 k 分别为 $1\sim n$ 时答案的和。

题解

考虑贪心，假设已知最小距离为 d，发现每次取树中深度最大的点的 d 级祖先作为关键点最佳。

而选取该节点作为关键点后可以直接删去该关键点的子树，然后继续从新的树中选择深度最大的点。

考虑用树链剖分和线段树维护每个点的 d 级祖先和子树删除操作。

另一方面，发现如果将最小距离设为 d，则每次子树删除操作至少删去 d 的节点，于是操作次数为
$O(\frac nd)$。

考虑倒序枚举每个最小距离，求出该最小距离至少需要的关键点个数，然后更新该关键点个数对应的答案。

总操作数为 $O(\sum_{i=1}^{n-1} \frac ni)=O(n\log n)$，删除子树和查询祖先操作时间复杂度为
$O(\log n)$，于是总时间复杂度为 $O\left(n\log^2 n\right)$。

注意每次枚举完成可以给整棵树打上子树还原标记，不能暴力重建树，否则时间复杂度过高。

const int MAXN=2e5+5;
struct Edge{
 int to,next;
}edge[MAXN<<1];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt].to=v;
 edge[edge_cnt].next=head[u];
 head[u]=edge_cnt;
}
int d[MAXN],sz[MAXN],f[MAXN],dfs_id[MAXN],dfs_t,inv_id[MAXN];
int h_son[MAXN],mson[MAXN],p[MAXN];
void dfs_1(int u,int fa,int depth){
 sz[u]=1;f[u]=fa;d[u]=depth;mson[u]=0;
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;

https://ac.nowcoder.com/acm/contest/5669/A

Last
update:
2020/08/06
21:22

2020-2021:teams:legal_string:jxm2001:other:
错题集_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E9%94%99%E9%A2%98%E9%9B%86_2&rev=1596720128

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:23

 dfs_1(v,u,depth+1);
 sz[u]+=sz[v];
 if(sz[v]>mson[u]){
 h_son[u]=v;
 mson[u]=sz[v];
 }
 }
}
void dfs_2(int u,int top){
 dfs_id[u]=++dfs_t;p[u]=top;inv_id[dfs_t]=u;
 if(mson[u])
 dfs_2(h_son[u],top);
 for(int i=head[u];i;i=edge[i].next){
 int v=edge[i].to;
 if(v==h_son[u])
 continue;
 dfs_2(v,v);
 }
}
int lef[MAXN<<2],rig[MAXN<<2],v[MAXN<<2],s[MAXN<<2],lazy[MAXN<<2];
int Max(int x,int y){
 if(!x||!y)return x|y;
 if(d[x]>d[y])return x;
 return y;
}
void build(int k,int L,int R){
 lef[k]=L,rig[k]=R;
 int M=L+R>>1;
 if(L==R)
 return s[k]=v[k]=inv_id[M],void();
 build(k<<1,L,M);build(k<<1|1,M+1,R);
 s[k]=v[k]=Max(v[k<<1],v[k<<1|1]);
}
void push_down(int k){
 if(lazy[k]<0){
 s[k<<1]=s[k<<1|1]=0;
 lazy[k<<1]=lazy[k<<1|1]=lazy[k];
 lazy[k]=0;
 }
 else if(lazy[k]>0){
 s[k<<1]=v[k<<1],s[k<<1|1]=v[k<<1|1];
 lazy[k<<1]=lazy[k<<1|1]=lazy[k];
 lazy[k]=0;
 }
}
void update(int k,int L,int R,int type){
 if(L<=lef[k]&&rig[k]<=R){
 if(type<0)s[k]=0;
 else s[k]=v[k];
 lazy[k]=type;

2026/01/14 02:23 3/13 错题集 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 return;
 }
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=L)update(k<<1,L,R,type);
 if(mid<R)update(k<<1|1,L,R,type);
 s[k]=Max(s[k<<1],s[k<<1|1]);
}
int Find_p(int pos,int dis){
 if(d[pos]<=dis)return 1;
 while(true){
 if(d[pos]-d[p[pos]]>=dis)return inv_id[dfs_id[pos]-dis];
 dis-=d[pos]-d[p[pos]]+1;
 pos=f[p[pos]];
 }
}
int n,ans[MAXN];
int Count(int dis){
 int cnt=0,p;
 while(true){
 if(!s[1])break;
 p=Find_p(s[1],dis);
 update(1,dfs_id[p],dfs_id[p]+sz[p]-1,-1);
 cnt++;
 }
 update(1,1,n,1);
 return cnt;
}
int main()
{
 while(~scanf("%d",&n)){
 edge_cnt=0,dfs_t=0;
 _rep(i,1,n)
 ans[i]=n,head[i]=0;
 _rep(i,2,n)
 Insert(read_int(),i);
 dfs_1(1,0,0);
 dfs_2(1,1);
 build(1,1,n);
 for(int i=n-1;i>=0;i--)
 ans[Count(i)]=i;
 _rep(i,2,n)ans[i]=min(ans[i],ans[i-1]);
 LL sum=0;
 _rep(i,1,n)sum+=ans[i];
 enter(sum);
 }
 return 0;
}

Last
update:
2020/08/06
21:22

2020-2021:teams:legal_string:jxm2001:other:
错题集_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E9%94%99%E9%A2%98%E9%9B%86_2&rev=1596720128

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:23

2、Greetings Souvenir

链接

题意

给定一棵大小为n的树，且树上的每个节点有一个权值 a_i，现在要给每个节点确定一个数值 b_i。

定义 $val_i=b_i\ast$(i 子树内有多少个点的权值 a_i 等于 b_i)，要求所有点 val_i 的 mex 尽
可能大。

题解

乱搞题，首先考虑每个 a，假如有 c_i 个节点权值为 a，对所有 $b_i=a$ 的点，其 val_i 的可能取
值只有 $a,2a\cdots c_ia$ 共 c_i 个。

于是所有可能的取值只有 $\sum_{i=1}^n c_i=n$ 个。

在每个点 i 与其可能取值的 val_i 间连一条边，时空间复杂度 $O(n^2)$。为防止爆空间，本题用
bitset 存边。

最后考虑进行二分图匹配，从小到大给所有可能值匹配，如果匹配失败则立即结束，时间复杂度
$O(n^3)$。

考虑乱搞，强行对匈牙利算法使用当前弧优化，于是时间复杂度降为 $O(n^2)$。

const int MAXN=2e4+5;
struct Edge{
 int to,next;
}edge[MAXN];
int head[MAXN],edge_cnt;
void Insert(int u,int v){
 edge[++edge_cnt]=Edge{v,head[u]};
 head[u]=edge_cnt;
}
bitset<MAXN>e[MAXN];
int dfn[MAXN],dfr[MAXN],dfs_t;
void p_dfs(int u){
 dfn[u]=++dfs_t;
 for(int i=head[u];i;i=edge[i].next)
 p_dfs(edge[i].to);
 dfr[u]=dfs_t;
}
int n,col[MAXN],cnt[MAXN];
int match[MAXN],cur[MAXN];
bool dfs(int u){
 cur[u]++;

https://ac.nowcoder.com/acm/contest/5670/G

2026/01/14 02:23 5/13 错题集 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 for(int &i=cur[u];i<=n;i++){
 if(!e[u][i])continue;
 if(!match[i]||dfs(match[i]))
 return match[i]=u,true;
 }
 return false;
}
int main()
{
 n=read_int();
 _rep(i,2,n)
 Insert(read_int(),i);
 p_dfs(1);
 _rep(i,1,n)
 col[dfn[i]]=read_int();
 _rep(i,1,n){
 _rep(j,dfn[i],dfr[i])
 cnt[col[j]]++;
 _rep(j,1,n){
 if(cnt[j]&&cnt[j]*j<=n)
 e[cnt[j]*j].set(i);
 cnt[j]=0;
 }
 }
 int ans=1;
 _for(i,1,n){
 if(dfs(i))
 ans++;
 else
 break;
 }
 enter(ans);
 return 0;
}

3、Interval

链接

题意

给定序列 $a_1,a_2\cdots a_n$，定义函数 $F(l,r)=a_l\text{&} a_{l+1}\text{&} \cdots a_r$，定义不可重
集 $S(l,r)=\{l\le a\le b\le r,F(a,b)\}$。

接下来若干询问，每次询问 $|S(l,r)|$，强制在线。

https://ac.nowcoder.com/acm/contest/5670/H

Last
update:
2020/08/06
21:22

2020-2021:teams:legal_string:jxm2001:other:
错题集_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E9%94%99%E9%A2%98%E9%9B%86_2&rev=1596720128

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:23

题解 1

首先，对固定的 r，易知 $F(l,r)$ 至多有 $O(\log v)$ 个取值，因为 $F(l,r)-F(l-1,r)=0$ 或 $F(l,r)$ 中的某
个不为 0 的位。

线段树可以 $O(\log n)$ 快速计算 $F(l,r)$。考虑对 l 二分，可以 $O(\log n\log v)$ 得到对固定的
r，$F(l,r)$ 的所有可能取值。

接下来考虑维护答案，发现 $S(l,r-1),S(l,r)$ 具有高度相似性，于是考虑使用可持久化线段树维护。

线段树的每个版本 r 维护所有 $S(l,r)(1\le l\le r)$ 的答案，而版本 r 只需要在版本 $r-1$ 的基础上稍
微修改即可。

线段树相邻版本的差异来自 $F(l,r)(1\le l\le r)$，$F(l,r)(1\le l\le r)$ 至多有 $O(\log v)$ 个取值，考虑依次
插入线段树。

而又有 $S(l,r)\subset S(l-1,r)$，于是考虑差分维护 $|S(l,r)|(1\le l\le r)$，令 $|S(l,r)|=\sum_{i=l}^r
d_{i,r}$。

对所有具有相同的值 v 的 $F(a,b)(b\le r)$，设 $\text{last}=\max(a)$，于是有 $1 \le l\le \text{last},v\in
S(l,r)$。

于是对所有不同的值，考虑维护每个值对 $d_{\text{last},r}$ 的贡献即可，时空间复杂度 $O(n\log n\log
v)$。

const int MAXN=1e5+5,MAXM=30;
int a[MAXN],lef[MAXN<<2],rig[MAXN<<2],s[MAXN<<2];
void push_up(int k){
 s[k]=s[k<<1]&s[k<<1|1];
}
void build(int k,int L,int R){
 lef[k]=L,rig[k]=R;
 int M=L+R>>1;
 if(L==R)return s[k]=a[M],void();
 build(k<<1,L,M);build(k<<1|1,M+1,R);
 push_up(k);
}
int query(int k,int L,int R){
 if(L<=lef[k]&&rig[k]<=R)return s[k];
 int mid=lef[k]+rig[k]>>1;
 if(mid>=R)return query(k<<1,L,R);
 else if(mid<L)return query(k<<1|1,L,R);
 return query(k<<1,L,R)&query(k<<1|1,L,R);
}
struct Node{
 int ch[2],v;
}node[MAXN*MAXM*MAXM];
int root[MAXN],tot;
void update(int &k1,int k2,int lef,int rig,int pos,int v){
 k1=++tot;

2026/01/14 02:23 7/13 错题集 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 node[k1]=node[k2];
 node[k1].v+=v;
 if(lef==rig)return;
 int mid=lef+rig>>1;
 if(mid>=pos)update(node[k1].ch[0],node[k2].ch[0],lef,mid,pos,v);
 else update(node[k1].ch[1],node[k2].ch[1],mid+1,rig,pos,v);
}
int query(int k,int lef,int rig,int L,int R){
 if(!k)return 0;
 if(L<=lef&&rig<=R)return node[k].v;
 int mid=lef+rig>>1;
 if(mid>=R)return query(node[k].ch[0],lef,mid,L,R);
 else if(mid<L)return query(node[k].ch[1],mid+1,rig,L,R);
 return
query(node[k].ch[0],lef,mid,L,R)+query(node[k].ch[1],mid+1,rig,L,R);
}
unordered_map<int,int> last;
int main()
{
 int n=read_int();
 _rep(i,1,n)a[i]=read_int();
 build(1,1,n);
 _rep(i,1,n){
 root[i]=root[i-1];
 int cur=-1,lef,rig,mid,pos=i+1;
 while(true){
 lef=1,rig=pos-1,pos=0;
 while(lef<=rig){
 mid=lef+rig>>1;
 if(query(1,mid,i)!=cur){
 lef=mid+1;
 pos=mid;
 }
 else
 rig=mid-1;
 }
 if(!pos)
 break;
 cur=query(1,pos,i);
 if(last.count(cur)){
 if(last[cur]<pos){
 update(root[i],root[i],1,n,last[cur],-1);
 update(root[i],root[i],1,n,pos,1);
 last[cur]=pos;
 }
 }
 else{
 update(root[i],root[i],1,n,pos,1);
 last[cur]=pos;
 }
 }

Last
update:
2020/08/06
21:22

2020-2021:teams:legal_string:jxm2001:other:
错题集_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E9%94%99%E9%A2%98%E9%9B%86_2&rev=1596720128

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:23

 }
 int q=read_int(),l,r,lastans=0;
 while(q--){
 l=(read_int()^lastans)%n+1,r=(read_int()^lastans)%n+1;
 if(l>r)swap(l,r);
 enter(lastans=query(root[r],1,n,l,r));
 }
 return 0;
}

题解 2

对固定的 r，考虑枚举过程中维护 $a_1\sim a_{r-1}$ 中数位为 0 的最后位置 a_last。

如果 a_r 某数位为 0，则该数位对应的 last 必有 $F(\text{last}+1,r)\neq F(\text{last},r)$。

于是可以 $O(\log v)$ 时间求出所有 $F(l,r)(1\le l\le r)$ 的可能取值。

而对于可持久化线段树的维护，可以改用区间标记永久化维护 F 带来的影响。

const int MAXN=1e5+5,MAXM=30;
struct Node{
 int ch[2],lazy;
}node[MAXN*MAXM*MAXM];
int root[MAXN],a[MAXN],tot;
void update(int &k1,int k2,int lef,int rig,int L,int R){
 k1=++tot;
 node[k1]=node[k2];
 if(L<=lef&&rig<=R){
 node[k1].lazy++;
 return;
 }
 int mid=lef+rig>>1;
 if(mid>=L)update(node[k1].ch[0],node[k2].ch[0],lef,mid,L,R);
 if(mid<R) update(node[k1].ch[1],node[k2].ch[1],mid+1,rig,L,R);
}
int query(int k,int lef,int rig,int pos){
 if(!k)return 0;
 if(lef==rig)return node[k].lazy;
 int mid=lef+rig>>1;
 if(mid>=pos)return query(node[k].ch[0],lef,mid,pos)+node[k].lazy;
 else return query(node[k].ch[1],mid+1,rig,pos)+node[k].lazy;
}
int zero[MAXM];
vector<int> b;
unordered_map<int,int> last;
int main()
{

2026/01/14 02:23 9/13 错题集 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 int n=read_int();
 _rep(i,1,n)a[i]=read_int();
 _rep(i,1,n){
 root[i]=root[i-1];
 b.clear();
 _for(j,0,MAXM){
 if(a[i]&(1<<j)){
 if(zero[j]>0)
 b.push_back(zero[j]);
 }
 else
 zero[j]=i;
 }
 b.push_back(i);
 sort(b.begin(),b.end(),greater<int>());
 b.erase(unique(b.begin(),b.end()),b.end());
 int cur=-1,lef;
 _for(j,0,b.size()){
 cur&=a[b[j]];
 lef=last.count(cur)?last[cur]:0;
 if(lef<b[j]){
 update(root[i],root[i],1,n,lef+1,b[j]);
 last[cur]=b[j];
 }
 }
 }
 int q=read_int(),l,r,lastans=0;
 while(q--){
 l=(read_int()^lastans)%n+1,r=(read_int()^lastans)%n+1;
 if(l>r)swap(l,r);
 enter(lastans=query(root[r],1,n,l));
 }
 return 0;
}

4、African sort

链接

题意

给定排列 p，每次可以选一个下标集合等概率打乱包含的数并花费集合大小的代价。

要求将 p 转化为 $1,2\cdots n$，求最优策略下最小代价的期望。

题解

https://ac.nowcoder.com/acm/contest/5671/A

Last
update:
2020/08/06
21:22

2020-2021:teams:legal_string:jxm2001:other:
错题集_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E9%94%99%E9%A2%98%E9%9B%86_2&rev=1596720128

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:23

将 p 转化为 $1,2\cdots n$ 等价于该置换只存在长度为 1 的循环。

有引理 1：随机打乱一个长度为 n 的循环，则循环的每个元素将等概率出现在长度为 $1\sim n$ 的循
环中。

引理 2：每次选择一个完整的循环将其全部打乱一定是最佳选择。

设将一个长度为 n 的循环打乱成 n 长度为 1 的循环的最小期望代价为 $f(n)$。

单独考虑每个点的期望代价，每个点在循环长度为 i 的代价由 i 个点均摊。

最后总代价为单个点代价的 n 倍，得到$f(n)=n\sum_{i=1}^n \frac{\frac
{f(i)}{i}}n+n=\sum_{i=1}^n\frac {f(i)}i+n(n\gt 1)$。

转化，得到 $f(n)=\frac {n(f(n-1)+1)}{n-1}(n\gt 2)$，边界条件 $f(2)=4,f(1)=0$。

const int MAXN=1e5+5,Mod=998244353;
int a[MAXN],f[MAXN],inv[MAXN];
bool vis[MAXN];
void get_inv(){
 inv[1]=1;
 _for(i,2,MAXN)
 inv[i]=1LL*(Mod-Mod/i)*inv[Mod%i]%Mod;
}
void get_f(){
 f[1]=0,f[2]=4;
 _for(i,3,MAXN)
 f[i]=1LL*i*inv[i-1]%Mod*(f[i-1]+1)%Mod;
}
int main()
{
 get_inv();
 get_f();
 int n=read_int(),m=read_int();
 while(m--){
 int ans=0;
 _rep(i,1,n)a[i]=read_int(),vis[i]=false;
 _rep(i,1,n){
 if(!vis[i]){
 int cnt=0,pos=i;
 while(!vis[pos]){
 vis[pos]=true,cnt++;
 pos=a[pos];
 }
 ans=(ans+f[cnt])%Mod;
 }
 }
 enter(ans);
 }
 return 0;

2026/01/14 02:23 11/13 错题集 2

CVBB ACM Team - https://wiki.cvbbacm.com/

}

5、Hacker Cups and Balls

链接

题意

给定一个 $1\sim n$ 的排列，一共 m 个操作。

每个操作为选择一个区间，将其按升序或降序排序。

问经过所有操作后排列中间的数为多少，保证 n 为奇数。

题解

于是考虑二分答案 v，答案的意义是验证中间的数是否不超过 v，显然这样的结果具有单调性。

对序列中的数，如果该数大于 v，则置为 1，否则置为 0。

于是区间排序操作可以使用线段树处理，最后查询中间的数的数值是否为 0 即可，时间复杂度
$O(n\log^2 n)$。

const int MAXN=1e5+5;
int a[MAXN],lef[MAXN<<2],rig[MAXN<<2],sum[MAXN<<2],lazy[MAXN<<2];
void build(int k,int L,int R,int v){
 lef[k]=L,rig[k]=R;
 lazy[k]=0;
 int M=L+R>>1;
 if(L==R)
 return sum[k]=(a[M]>v),void();
 build(k<<1,L,M,v);
 build(k<<1|1,M+1,R,v);
 sum[k]=sum[k<<1]+sum[k<<1|1];
}
void push_down(int k){
 if(lazy[k]){
 lazy[k<<1]=lazy[k<<1|1]=lazy[k];
 sum[k<<1]=(rig[k<<1]-lef[k<<1]+1)*(lazy[k]-1);
 sum[k<<1|1]=(rig[k<<1|1]-lef[k<<1|1]+1)*(lazy[k]-1);
 lazy[k]=0;
 }
}
int query(int k,int L,int R){
 if(L<=lef[k]&&rig[k]<=R)
 return sum[k];
 push_down(k);

https://codeforces.com/gym/101234/problem/A

Last
update:
2020/08/06
21:22

2020-2021:teams:legal_string:jxm2001:other:
错题集_2

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E9%94%99%E9%A2%98%E9%9B%86_2&rev=1596720128

https://wiki.cvbbacm.com/ Printed on 2026/01/14 02:23

 int mid=lef[k]+rig[k]>>1;
 if(mid>=R)return query(k<<1,L,R);
 if(mid<L)return query(k<<1|1,L,R);
 return query(k<<1,L,R)+query(k<<1|1,L,R);
}
void update(int k,int L,int R,int v){
 if(L<=lef[k]&&rig[k]<=R){
 sum[k]=(rig[k]-lef[k]+1)*v;
 lazy[k]=v+1;
 return;
 }
 push_down(k);
 int mid=lef[k]+rig[k]>>1;
 if(mid>=L)update(k<<1,L,R,v);
 if(mid<R)update(k<<1|1,L,R,v);
 sum[k]=sum[k<<1]+sum[k<<1|1];
}
int n,m,ql[MAXN],qr[MAXN],qv[MAXN];
bool check(int v){
 build(1,1,n,v);
 int cnt0,cnt1;
 _for(i,0,m){
 cnt1=query(1,ql[i],qr[i]);
 cnt0=qr[i]-ql[i]+1-cnt1;
 if(qv[i]==0){
 if(cnt0)update(1,ql[i],ql[i]+cnt0-1,0);
 if(cnt1)update(1,ql[i]+cnt0,qr[i],1);
 }
 else{
 if(cnt1)update(1,ql[i],ql[i]+cnt1-1,1);
 if(cnt0)update(1,ql[i]+cnt1,qr[i],0);
 }
 }
 return !query(1,(n+1)/2,(n+1)/2);
}
int main()
{
 n=read_int(),m=read_int();
 _rep(i,1,n)a[i]=read_int();
 _for(i,0,m){
 ql[i]=read_int(),qr[i]=read_int();
 if(ql[i]>qr[i]){
 qv[i]=1;
 swap(ql[i],qr[i]);
 }
 }
 int lef=1,rig=n,mid,ans;
 while(lef<=rig){
 mid=lef+rig>>1;
 if(check(mid)){

2026/01/14 02:23 13/13 错题集 2

CVBB ACM Team - https://wiki.cvbbacm.com/

 ans=mid;
 rig=mid-1;
 }
 else
 lef=mid+1;
 }
 enter(ans);
 return 0;
}

6、Zero Game

链接

题意

给定一个长度为 n 的 01 串，q 个询问。

每次询问允许进行 k_i 次操作，每次操作可以任意移动一个字符，问 k_i 次操作后的最长的连续 0
串的长度。

题解

考虑贪心，不难发现最佳答案一定为选择一段区间，移除区间的所有 1，如果还有剩余的操作此数，则
将区间外的 0 移入区间。

记 pre_i 表示前 i 个字母中有多少个 1，$a_i=i-2pre_i$。

对一个合法的区间 $[l,r]$，区间中原有 0 的个数为 $r-l+1-(pre_r-pre_{l-1})$，可以额外移入的 0 的个数
为 $k-(pre_r-pre_{l-1})$。

于是该区间的答案为 $r-l+1-(pre_r-pre_{l-1})+k-(pre_r-pre_{l-1})=k+(r-pre_r)-(l-1-pre_{l-1})=k+a_r-
a_{l-1}$。

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E9%94%99%E9%A2%98%E9%9B%86_2&rev=1596720128

Last update: 2020/08/06 21:22

https://codeforces.com/gym/101234/problem/J
https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:jxm2001:other:%E9%94%99%E9%A2%98%E9%9B%86_2&rev=1596720128

	错题集 2
	1、Ancient Distance
	题意
	题解

	2、Greetings Souvenir
	题意
	题解

	3、Interval
	题意
	题解 1
	题解 2

	4、African sort
	题意
	题解

	5、Hacker Cups and Balls
	题意
	题解

	6、Zero Game
	题意
	题解

