
2026/01/14 08:31 1/3 回文树

CVBB ACM Team - https://wiki.cvbbacm.com/

回文树

结构

回文树大概长这样：

功能

假设我们有一个串 S，S 下标从 0 开始，则回文树能做到如下几点：

求串 S 前缀 $0\sim i$ 内本质不同回文串的个数（两个串长度不同或者长度相同且至少有一个字1.
符不同便是本质不同）。
求串 S 内每一个本质不同回文串出现的次数。2.
求串 S 内回文串的个数（其实就是 1 和 2 结合起来）。3.
求以下标 i 结尾的回文串的个数。4.

https://wiki.cvbbacm.com/lib/exe/fetch.php?tok=9f883b&media=https%3A%2F%2Foi-wiki.org%2Fstring%2Fimages%2Fpam1.png

Last
update:
2020/10/03
20:00

2020-2021:teams:legal_string:lgwza:
回文树

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:%E5%9B%9E%E6%96%87%E6%A0%91&rev=1601726415

https://wiki.cvbbacm.com/ Printed on 2026/01/14 08:31

模板

const int MAXN = 100005 ;
const int N = 26 ;

struct Palindromic_Tree {
 //cnt最后count一下之后是那个节点代表的回文串出现的次数
 int next[MAXN][N] ;//next指针，next指针和字典树类似，指向的串为当前串两端加上同一
个字符构成
 int fail[MAXN] ;//fail指针，失配后跳转到fail指针指向的节点
 int cnt[MAXN] ; //表示节点i表示的本质不同的串的个数（建树时求出的不是完全的，最
后count()函数跑一遍以后才是正确的）
 int num[MAXN] ; //表示以节点i表示的最长回文串的最右端点为回文串结尾的回文串个数
 int len[MAXN] ;//len[i]表示节点i表示的回文串的长度（一个节点表示一个回文串）
 int S[MAXN] ;//存放添加的字符
 int last ;//指向新添加一个字母后所形成的最长回文串表示的节点。
 int n ;//表示添加的字符个数。
 int p ;//表示添加的节点个数。

 int newnode (int l) {//新建节点
 for (int i = 0 ; i < N ; ++ i) next[p][i] = 0 ;
 cnt[p] = 0 ;
 num[p] = 0 ;
 len[p] = l ;
 return p ++ ;
 }

 void init () {//初始化
 p = 0 ;
 newnode (0) ;
 newnode (-1) ;
 last = 0 ;
 n = 0 ;
 S[n] = -1 ;//开头放一个字符集中没有的字符，减少特判
 fail[0] = 1 ;
 }

 int get_fail (int x) {//和KMP一样，失配后找一个尽量最长的
 while (S[n - len[x] - 1] != S[n]) x = fail[x] ;
 return x ;
 }

 void add (int c) {
 c -= 'a' ;
 S[++ n] = c ;
 int cur = get_fail (last) ;//通过上一个回文串找这个回文串的匹配位置
 if (!next[cur][c]) {//如果这个回文串没有出现过，说明出现了一个新的本质不同
的回文串
 int now = newnode (len[cur] + 2) ;//新建节点

2026/01/14 08:31 3/3 回文树

CVBB ACM Team - https://wiki.cvbbacm.com/

 fail[now] = next[get_fail (fail[cur])][c] ;//和AC自动机一样建
立fail指针，以便失配后跳转
 next[cur][c] = now ;
 num[now] = num[fail[now]] + 1 ;
 }
 last = next[cur][c] ;
 cnt[last] ++ ;
 }

 void count () {
 for (int i = p - 1 ; i >= 0 ; -- i) cnt[fail[i]] += cnt[i] ;
 //父亲累加儿子的cnt，因为如果fail[v]=u，则u一定是v的子回文串！
 }
} ;

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:%E5%9B%9E%E6%96%87%E6%A0%91&rev=1601726415

Last update: 2020/10/03 20:00

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:%E5%9B%9E%E6%96%87%E6%A0%91&rev=1601726415

	回文树
	结构
	功能
	模板

