
2026/01/14 03:44 1/4 生成函数理论 4——指数型生成函数

CVBB ACM Team - https://wiki.cvbbacm.com/

生成函数理论 4——指数型生成函数

事实 1

若 $\displaystyle f(x)=\sum_{n=0}^{\infty}\frac{a_n}{n!}x^n$，则 $\displaystyle
\{a_{n+1}\}_{n=0}^{\infty}$ 的指数型生成函数是 $$
\sum_{n=0}^{\infty}\frac{a_{n+1}}{n!}x^n=\sum_{n=1}^{\infty}\frac{na_n}{n!}x^{n-1}=f'(x).
$$

性质 2

若 $\displaystyle f(x)=\sum_{n=0}^{\infty}\frac{a_n}{n!}x^n$，则 $\displaystyle
\{a_{n+k}\}_{n=0}^{\infty}$ 的指数型生成函数是 $\displaystyle D^kf$。

例 3

回忆 Fibonacci 数列 $\{f_n\}_{n=0}^{\infty}$，满足 $f_{n+2}=f_{n+1}+f_n$，初始条件为
$f_0=0,f_1=1$。用生成函数的方法再次求解 $f_n$。

解 令 $f(x)$ 为 $\{f_n\}_{n=0}^{\infty}$ 的指数型生成函数。性质 2 立即给出 $$ f''(x)=f'(x)+f(x). $$
解此常系数线性齐次微分方程，得到 $$ f(x)=C_1e^{\frac{1+\sqrt5}{2}x}+C_2e^{\frac{1-
\sqrt5}{2}x}, $$ 其中 $C_1,C_2$ 是待定系数。初始条件转化为 $f(0)=0,f'(0)=1$，代入解得
$\displaystyle C_1=\frac{1}{\sqrt5},C_2=\frac{-1}{\sqrt5}$，从而 $$
f(x)=\frac{e^{\frac{1+\sqrt5}{2}x}-e^{\frac{1-\sqrt5}{2}x}}{\sqrt5}. $$ 最后，得 $$
f_n=\left[\frac{x^n}{n!}\right]f(x)=\frac{\left(\frac{1+\sqrt5}{2}\right)^n-\left(\frac{1-
\sqrt5}{2}\right)^n}{\sqrt5} $$

事实 4

若 $\displaystyle f(x)=\sum_{n=0}^{\infty}\frac{a_n}{n!}x^n$，则 $\{na_n\}_{n=0}^{\infty}$ 的指
数型生成函数是 $xDf.$

性质 5

若 $\displaystyle f(x)=\sum_{n=0}^{\infty}\frac{a_n}{n!}x^n$，则 $\{P(n)a_n\}_{n=0}^{\infty}$ 的
指数型生成函数是 $P(xD)f.$

性质 6

若 $\displaystyle
f(x)=\sum_{n=0}^{\infty}\frac{a_n}{n!}x^n,g(x)=\sum_{n=0}^{\infty}\frac{b_n}{n!}x^n$（即
$f(x),g(x)$ 分别是数列 $\{a_n\}_{n=0}^{\infty}$ 和 $\{b_n\}_{n=0}^{\infty}$ 的指数型生成函数），
则 $f(x)g(x)$ 是数列 $\displaystyle \left\{\sum_{k=0}^n\binom{n}{k}a_kb_{n-
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k}\right\}_{n=0}^{\infty}$ 的指数型生成函数。

例 7

回忆 Bell 数。令 $B_n$ 表示 $[n]$ 上所有划分的个数，则有 $$
B_n=\sum_{k=1}^{n}\binom{n-1}{k-1}B_{n-k}=\sum_{i=0}^{n-1}\binom{n-1}{n-i-1}B_i.(i=n-k)
$$ 所以 $$ B_{n+1}=\sum_{k=0}^{n}\binom{n}{n-k}B_k=\sum_{k=0}^{n}\binom{n}{k}B_k. $$
初始条件为 $B_0=1,B_1=1$，利用上述指数型生成函数的性质，再次求解 $B_n$。

解 考虑 $\{B_n\}_{n=0}^{\infty}$ 的指数型生成函数 $B(x)$。利用递推关系及上述指数型生成函数的性
质，又 $\{1\}_{n=0}^{\infty}$ 的指数型生成函数为 $e^x$，立即有 $$ B'(x)=e^xB(x), $$ 且
$B(0)=1$。解此微分方程，得 $$ B(x)=e^{e^x-1}. $$ 从而 $$ \begin{align}
B(x)&=\frac{1}{e}\sum_{k=0}^{\infty}\frac{(e^x)^k}{k!}=\frac{1}{e}\sum_{k=0}^{\infty}\frac{
1}{k!}\sum_{n=0}^{\infty}\frac{k^nx^n}{n!}\\
&=\frac{1}{e}\sum_{n=0}^{\infty}\left(\sum_{k=0}^{\infty}\frac{k^n}{k!}\right)\frac{x^n}{n!}.
\end{align} $$ 因此 $$ B_n=\frac{1}{e}\sum_{k=0}^{\infty}\frac{k^n}{k!}. $$ $$

例 8

考虑符合下面要求的“合法”括号串：$n$ 个左括号与 $n$ 个右括号从左至右排成一排，要求在任何一个
位置，其左边的左括号不比右括号少。令 $f_n$ 表示这样的合法括号串总数。显然 $f_1=1,f_2=2,f_3=5$。
定义 $f_0=1$。求 $\{f_n\}_{n=0}^{\infty}$ 的生成函数。

解 令 $g_n$ 表示 $n$ 对括号能形成的本原括号串的总数。本原括号串不仅合法，而且在到达尽头之前任
何一个位置，其左边的左括号始终比右括号多。因为每一个本原括号串去掉第一个左括号和最后一个右括
号必为一个合法括号串，反之亦然，从而 $g_1=f_1,g_n=f_{n-1}$。设 $k$ 为一合法括号串从左开始第一
次达到左、右括号数相等的左、右括号数，则 $1\le k\le n$，且有递推关系 $$
f_n=\sum_{k=1}^{n}g_kf_{n-k}=\sum_{k=1}^{n}f_{k-1}f_{n-k},~~~n\ge 1 $$ 注意 $n=0$ 时递推
不成立。等号右边的形式让我们自然想到应该利用普通生成函数，而不是指数型生成函数。令 $f(x)$ 表示
$\{f_n\}_{n=0}^{\infty}$ 的普通生成函数。令 $b_0=0$，且当 $k\ge 1$ 时，$b_k=f_{k-1}$，则 $$
f_n=\sum_{k=1}^nf_{k-1}f_{n-k}=\sum_{k=1}^nb_kf_{n-k}=\sum_{k=0}^nb_kf_{n-k}. $$ 这说明
$$ \begin{align} f(x)-1&=\sum_{n=1}^{\infty}\left(\sum_{k=0}^{n}b_kf_{n-k}\right)x^n+b_0f_n\\
&=\sum_{n=0}^{\infty}\left(\sum_{k=0}^nb_kf_{n-
k}\right)x^n=\left(\sum_{n=0}^{\infty}b_nx^n\right)f(x)\\
&=\left(\sum_{n=1}^{\infty}f_{n-1}x^n\right)f(x)=xf^2(x), \end{align} $$ 从而 $$
f(x)=\frac{1\pm\sqrt{1-4x}}{2x}. $$ 由初值 $f(0)=1$ 可知，应有 $$ f(x)=\frac{1-\sqrt{1-4x}}{2x}.
$$ 进一步计算可得 $$
f(x)=\sum_{n=1}^{\infty}2^{n-1}\frac{1\cdot3\cdot5\cdots(2n-3)}{n!}x^{n-1}=\sum_{n=0}^{\inf
ty}\frac{1}{n+1}\binom{2n}{n}x^n. $$ 所以 $\displaystyle f_n=\frac{1}{n+1}\binom{2n}{n}$，此
即 Catalan 数。

例 9

置换 $\sigma\in S_n$ 称为 错位排列，如果对任意 $1\le i\le n$，均有 $\sigma(i)\ne i$。令 $d_n$ 表示
$S_n$ 中错位排列的总数。易见 $$ n!=\sum_{k=0}^n\binom{n}{k}d_{n-k}. $$ 这促使我们考虑
$d_n$ 的指数型生成函数 $\displaystyle D(x)=\sum_{n=0}^{\infty}d_n\frac{x^n}{n!}$。由于
$\{1\}_{n=0}^{\infty}$ 的指数型生成函数为 $e^x$，而 $\{n!\}_{n=0}^{\infty}$ 的指数型生成函数为
$$ \sum_{n\ge 0}\frac{n!}{n!}x^n=\sum_{n\ge 0}x^n=\frac{1}{1-x}, $$ 由前面的递推关系可得
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$\displaystyle \frac{1}{1-x}=e^xD(x)$，即 $\displaystyle D(x)=\frac{e^{-x}}{1-x}$。

展开得到 $$ D(x)=\frac{e^{-x}}{1-x}=\frac{1}{1-
x}\sum_{i=0}^{\infty}\frac{(-1)^i}{i!}x^i=\sum_{n=0}^{\infty}\left(\sum_{i=0}^n\frac{(-1)^i}{i!
}\right)x^n, $$ 所以 $$ d_n=n!\sum_{i=0}^n\frac{(-1)^i}{i!}. $$ 这表明，在 $S_n$ 中任取一个置换，
它是错位排列的概率为 $\displaystyle \frac{d_n}{n!}$，其极限是 $e^{-1}(n\rightarrow\infty)$。

性质 10

若 $\displaystyle f(x)=\sum_{n=0}^{\infty}\frac{a_n}{n!}x^n,\displaystyle
g(x)=\sum_{n=0}^{\infty}\frac{b_n}{n!}x^n\displaystyle
h(x)=\sum_{n=0}^{\infty}\frac{c_n}{n!}x^n$（即 $f(x),g(x),h(x) $ 分别是数列
$\{a_n\}_{n=0}^{\infty},\{b_n\}_{n=0}^{\infty},\{c_n\}_{n=0}^{\infty}$ 的指数型生成函数），则
$f(x)g(x)h(x)$ 是数列 $$ \left\{\sum_{i+j+k=n\\~~i,j,k\ge
0}\binom{n}{i,j,k}a_ib_jc_k\right\}_{n=0}^{\infty} $$ 的指数型生成函数。

性质 11

若 $\displaystyle f(x)=\sum_{n=0}^{\infty}\frac{a_n}{n!}x^n$（即 $f(x)$ 是数列
$\{a_n\}_{n=0}^{\infty}$ 的指数型生成函数），则 $f^k(x)$ 是数列 $$
\left\{\sum_{n_1+n_2+\cdots+n_k=n\\~~n_i\ge0,i=1,\cdots,k}\binom{n}{n_1,n_2,\cdots,n_k}a_{n_1
}a_{n_2}\cdots a_{n_k}\right\}_{n=0}^{\infty} $$ 的指数型生成函数。

定理 12

令 $h_n$ 表示多重集 $S=\{n_1\cdot t_1,n_2\cdot t_2,\cdots,n_k\cdot t_k\}$ 的满足某种选取规则 $P$
的 n-排列数，其中 $n_i\ge 0(1\le i\le k)$。记仅由 $t_i$ 组成的满足性质 $P$ 的 n-排列数为 $a_n^{(i)}$，
数列 $\{a_n^{(i)}\}_{n=0}^{\infty}$ 的指数型生成函数为 $f_i(x)(1\le i\le k)$，则数列
$\{h_n\}_{n=0}^{\infty}$ 的指数型生成函数为 $$ h(x)=\prod_{i=1}^kf_i(x). $$ 证明 设
$\displaystyle f_i(x)=\sum_{j=0}^{\infty}\frac{a_j^{(i)}}{j!}x^j(1\le i\le k)$，则 $$ \begin{align}
h_n&=\sum_{m_1+m_2+\cdots+m_k=n\\~~~~~~~0\le m_i\le
n_i}\binom{n}{m_1,m_2,\cdots,m_k}\prod_{i=1}^ka_{m_i}^{(i)}\\
&=\sum_{m_1+m_2+\cdots+m_k=n\\~~~~~~~0\le m_i\le
n_i}n!\frac{\prod_{i=1}^ka_{m_i}^{(i)}}{\prod_{i=1}^km_i!}=\left[\frac{x^n}{n!}\right]\prod_{i=
1}^kf_i(x), \end{align} $$ 从而 $$ h(x)=\prod_{i=1}^kf_i(x) $$ $$

注

一般地，若 $n_i=\infty$，且所循规则 $P$ 对元素 $t_i$ 的选取没有限制，则 $$ f_i(x)=e^x; $$ 若
$n_i<\infty$，且规则 $P$ 对元素 $t_i$ 的选取没有限制，则 $$ f_i(x)=\sum_{j=0}^{n_i}\frac{x^j}{j!}.
$$ 有时元素 $t_i$ 的选取受到限制，例如 $t_i$ 只能有大于 $1$ 的奇数个，此时 $t_i$ 满足该规则的 n-排
列数即为 $$ a_j^{(i)}= \begin{cases} 1,&j=3,5,7,9,\cdots,\\ 0,&其他, \end{cases} $$ 于是 $$
f_i(x)=\sum_{j=1}^{\infty}\frac{x^{2j+1}}{(2j+1)!}=\frac{e^x-e^{-x}-2x}{2}. $$ $$ ==== 例 13
==== 用红、白、蓝三种颜色对 $1$ 行 $n$ 列的棋盘上所有方格进行涂色。若要求涂成红色的方格数为偶
数，则有多少种涂色方法？

解 用 $h_n$ 表示这样的涂色方法数，且设数列 $\{h_n\}_{n=0}^{\infty}$ 的指数型生成函数为 $h(x)$。
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易见 $$ \begin{align}
h(x)&=\left(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots\right)\left(1+\frac{x}{1!}+\frac{x^2}{2!}+\
cdots\right)^2\\ &=\frac{1}{2}(e^x+e^{-x})(e^x)^2=\frac{1}{2}(e^{3x}+e^x)\\
&=\frac{1}{2}\left(\sum_{n=0}^{\infty}\frac{(3x)^n}{n!}+\sum_{n=0}^{\infty}\frac{x^n}{n!}\ri
ght)\\ &=\frac{1}{2}\sum_{n=0}^{\infty}(3^n+1)\frac{x^n}{n!}, \end{align} $$ 因此 $$
h_n=\frac{3^n+1}{2}. $$ $$

例 14

确定每位数字都是奇数且 $1$ 和 $3$ 出现偶数次的 $n$ 位数个数 $h_n$。

解 设 $\{h_n\}_{n=0}^{\infty}$ 的指数型生成函数为 $h(x)$，则 $$ \begin{align}
h(x)&=\left(1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots\right)^2\left(1+\frac{x}{1!}+\frac{x^2}{2!
}+\cdots\right)^3\\ &=\left(\frac{e^x+e^{-
x}}{2}\right)^2e^{3x}=\frac{1}{4}(e^{5x}+2e^{3x}+e^x)\\
&=\sum_{n=0}^{\infty}\frac{5^n+2\cdot 3^n+1}{4}\cdot\frac{x^n}{n!}. \end{align} $$ 因此 $$
h_n=\frac{5^n+2\cdot 3^n+1}{4}. $$
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