
2026/01/14 04:53 1/6 2-SAT

CVBB ACM Team - https://wiki.cvbbacm.com/

2-SAT
SAT 是适定性（Satisfiability）问题的简称。一般形式为 k - 适定性问题，简称 k-SAT。而当 $k>2$ 时该
问题为 NP 完全的。所以我们只研究 $k=2$ 的情况。

定义

2-SAT，简单地说就是给出 n 个集合，每个集合有两个元素，已知若干个 $<a,b>$，表示 a 与 b 矛盾
（其中 a 与 b 属于不同的集合）。然后从每个集合选择一个元素，判断能否一共选 n 个两两不矛
盾的元素。显然可能有多种选择方案，一般题中只需要求出一种即可。

现实意义

比如邀请人来吃喜酒，夫妻二人必须去一个，然而某些人之间有矛盾（比如 A 先生与 B 女士有矛盾，C 女
士不想和 D 先生在一起），那么我们要确定能否避免来人之间没有矛盾，有时需要方案。这是一类生活中
常见的问题。

使用布尔方程表示上述问题。设 a 表示 A 先生去参加，那么 B 女士就不能参加 $(\neg a);b$ 表示
C 女士参加，那么 $\neg b$ 也一定成立（D 先生不参加）。总结一下，即 $(a \or b)$（变量 a,b 至少
满足一个）。对这些变量关系建有向图，则有：$\neg a\Rightarrow b\ \and\neg b\Rightarrow a $（$a$ 不
成立则 b 一定成立；同理，b 不成立则 a 一定成立）。建图之后，我们就可以使用缩点算法来求解
2-SAT 问题了。

常用解决方法

Tarjan SCC 缩点

算法考究在建图这点，我们举个例子来讲：

假设有 $a1,a2$ 和 $b1,b2$ 两对，已知 $a1$ 和 $b2$ 间有矛盾，于是为了方案自洽，由于两者中必须选
一个，所以我们就要拉两条有向边 $(a1,b1)$ 和 $(b2,a2)$ 表示选了 $a1$ 则必须选 $b1$，选了 $b2$ 则
必须选 $a2$ 才能够自洽。

然后通过这样子建边我们跑一遍 Tarjan SCC 判断是否有一个集合中的两个元素在同一个 SCC 中，若有则
输出不可能，否则输出方案。构造方案只需要把几个不矛盾的 SCC 拼起来就好了。

输出方案时可以通过变量在图中的拓扑序确定该变量的取值。如果变量 $\neg x$ 的拓扑序在 x 之后，
那么取 x 值为真。应用到 Tarjan 算法的缩点，即 x 所在 SCC 编号在 $\neg x$ 之前时，取 x 为真。
因为 Tarjan 算法求强连通分量时使用了栈，所以 Tarjan 求得的 SCC 编号相当于反拓扑序。

显然地，时间复杂度为 $O(n+m)$。

例题

HDU 3062 Party

http://acm.hdu.edu.cn/showproblem.php?pid=3062

Last
update:
2020/08/25
19:19

2020-2021:teams:legal_string:lgwza:2-sat https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:2-sat&rev=1598354340

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:53

题面：有 n 对夫妻被邀请参加一个聚会，因为场地的问题，每对夫妻中只有 1 人可以列席。在
$2n$ 个人中，某些人之间有着很大的矛盾（当然夫妻之间是没有矛盾的），有矛盾的 2 个人是不会
同时出现在聚会上的。有没有可能会有 n 个人同时列席？

这是一道多校题，裸的 2-SAT 判断是否有方案，按照我们上面的分析，如果 $a1$ 中的丈夫和 $a2$ 中的
妻子不合，我们就把 $a1$ 中的丈夫和 $a2$ 中的丈夫连边，把 $a2$ 中的妻子和 $a1$ 中的妻子连边，然
后缩点染色判断即可。

参考代码：

#include<bits/stdc++.h>
using namespace std;
const int N=3e3+20;
int dfn[N],s[N],top,low[N],cnt;
int sc,scc[N];
bool in[N];
vector<int>adj[N];
void add(int u,int v){
 adj[u].push_back(v);
}
void tarjan(int u){
 dfn[u]=low[u]=++cnt;
 s[++top]=u;
 in[u]=1;
 for(int i=0;i<adj[u].size();i++){
 int v=adj[u][i];
 if(!dfn[v]){
 tarjan(v);
 low[u]=min(low[u],low[v]);
 }
 else if(in[v]){
 low[u]=min(low[u],dfn[v]);
 }
 }
 if(dfn[u]==low[u]){
 ++sc;
 do{
 scc[s[top]]=sc;
 in[s[top]]=0;
 }while(s[top--]!=u);
 }
}
int n,m;
bool solve(){
 for(int i=0;i<2*n;i++){
 if(!dfn[i]) tarjan(i);
 }
 for(int i=0;i<2*n;i+=2){
 if(scc[i]==scc[i+1]) return 0;

2026/01/14 04:53 3/6 2-SAT

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 return 1;
}
void init(){
 memset(dfn,0,sizeof(dfn));
 memset(low,0,sizeof(low));
 top=cnt=sc=0;
 memset(scc,0,sizeof(scc));
 memset(in,0,sizeof(in));
 memset(s,0,sizeof(s));
 for(int i=0;i<N;i++) adj[i].clear();
}
int main(){
 while(~scanf("%d%d",&n,&m)){
 init();
 for(int i=1;i<=m;i++){
 int a1,a2,c1,c2;
 scanf("%d %d %d %d",&a1,&a2,&c1,&c2);
 add(2*a1+c1,2*a2+1-c2);// 对于第 i 对夫妇，我们用 2i+1 表示丈夫，2i 表
示妻子。
 add(2*a2+c2,2*a1+1-c1);
 }
 if(solve()) puts("YES");
 else puts("NO");
 }
 return 0;
}

2018-2019 ACM-ICPC Asia Seoul Regional K TV Show Game

题面：有 $k(k>3)$ 盏灯，每盏灯是红色或者蓝色，但是初始的时候不知道灯的颜色。有 n 个人，每
个人选择 3 盏灯并猜灯的颜色。一个人猜对两盏灯或以上的颜色就可以获得奖品。判断是否存在一个灯
的着色方案使得每个人都能领奖，若有则输出一种灯的着色方案。

这道题在判断是否有方案的基础上，在有方案时还要输出一个可行解。

根据 伍昱 -《由对称性解 2-sat 问题》 ，我们可以得出：如果要输出 2-SAT 问题的一个可行解，只需要在
tarjan 缩点后所得的 DAG 上自底向上地进行选择和删除。

具体实现的时候，可以通过构造 DAG 的反图后在反图上进行拓扑排序实现；也可以根据 tarjan 缩点后，
所属连通块编号越小，节点越靠近叶子节点这一性质，优先对所属连通块编号小的节点进行选择。

下面给出第二种实现方法的代码。

参考代码：

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1e4 + 5;
const int maxk = 5005;

http://codeforces.com/gym/101987
https://wenku.baidu.com/view/31fd7200bed5b9f3f90f1ce2.html
https://wenku.baidu.com/view/31fd7200bed5b9f3f90f1ce2.html
https://wenku.baidu.com/view/31fd7200bed5b9f3f90f1ce2.html

Last
update:
2020/08/25
19:19

2020-2021:teams:legal_string:lgwza:2-sat https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:2-sat&rev=1598354340

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:53

int n, k;
int id[maxn][5];
char s[maxn][5][5], ans[maxk];
bool vis[maxn];

struct Edge {
 int v, nxt;
} e[maxn * 100];
int head[maxn], tot = 1;
void addedge(int u, int v) {
 e[tot].v = v;
 e[tot].nxt = head[u];
 head[u] = tot++;
}

int dfn[maxn], low[maxn], color[maxn], stk[maxn], ins[maxn], top,
dfs_clock, c;
void tarjan(int x) {
 stk[++top] = x;
 ins[x] = 1;
 dfn[x] = low[x] = ++dfs_clock;
 for (int i = head[x]; i; i = e[i].nxt) {
 int v = e[i].v;
 if (!dfn[v]) {
 tarjan(v);
 low[x] = min(low[x], low[v]);
 } else if (ins[v])
 low[x] = min(low[x], dfn[v]);
 }
 if (dfn[x] == low[x]) {
 c++;
 do {
 color[stk[top]] = c;
 ins[stk[top]] = 0;
 } while (stk[top--] != x);
 }
}

int main() {
 scanf("%d %d", &k, &n);
 for (int i = 1; i <= n; i++) {
 for (int j = 1; j <= 3; j++) scanf("%d%s", &id[i][j], s[i][j]);

 for (int j = 1; j <= 3; j++) {
 for (int k = 1; k <= 3; k++) {
 if (j == k) continue;
 int u = 2 * id[i][j] - (s[i][j][0] == 'B');
 int v = 2 * id[i][k] - (s[i][k][0] == 'R');
 addedge(u, v);

2026/01/14 04:53 5/6 2-SAT

CVBB ACM Team - https://wiki.cvbbacm.com/

 }
 }
 }

 for (int i = 1; i <= 2 * k; i++)
 if (!dfn[i]) tarjan(i);

 for (int i = 1; i <= 2 * k; i += 2)
 if (color[i] == color[i + 1]) {
 puts("-1");
 return 0;
 }

 for (int i = 1; i <= 2 * k; i += 2) {
 int f1 = color[i], f2 = color[i + 1];
 if (vis[f1]) {
 ans[(i + 1) >> 1] = 'R';
 continue;
 }
 if (vis[f2]) {
 ans[(i + 1) >> 1] = 'B';
 continue;
 }
 if (f1 < f2) {
 vis[f1] = 1;
 ans[(i + 1) >> 1] = 'R';
 } else {
 vis[f2] = 1;
 ans[(i + 1) >> 1] = 'B';
 }
 }
 ans[k + 1] = 0;
 printf("%s\n", ans + 1);
 return 0;
}

练习题

HDU1814 和平委员会

POJ3683 牧师忙碌日

参考链接

OI Wiki

http://acm.hdu.edu.cn/showproblem.php?pid=1814
http://poj.org/problem?id=3683
https://oi-wiki.org/graph/2-sat/

Last
update:
2020/08/25
19:19

2020-2021:teams:legal_string:lgwza:2-sat https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:2-sat&rev=1598354340

https://wiki.cvbbacm.com/ Printed on 2026/01/14 04:53

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:2-sat&rev=1598354340

Last update: 2020/08/25 19:19

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:2-sat&rev=1598354340

	2-SAT
	定义
	现实意义
	常用解决方法
	Tarjan SCC 缩点

	例题
	练习题
	参考链接

