
2026/01/14 06:52 1/2 Manacher 算法

CVBB ACM Team - https://wiki.cvbbacm.com/

Manacher 算法

描述

给定一个长度为 n 的字符串 s，请找到所有对 (i,j) 使得子串 $s[i\ldots j]$ 为一个回文串。当
$t=t_{rev}$ 时，字符串 t 是一个回文串（t_{rev} 是 t 的反转字符串）。

更进一步的描述

显然在最坏情况下可能有 $O(n^2)$ 个回文串，因此似乎一眼看过去该问题并没有线性算法。

但是关于回文串的信息可用 一种更紧凑的方式 表达：对于每个位置 $i=0\ldots n-1$，我们找出值 $d_1[i]$
和 $d_2[i]$。二者分别表示以位置 i 为中心的长度为奇数和长度为偶数的回文串个数。

举例来说，字符串 $s=\mathtt{abababc}$ 以 $s[3]=b$ 为中心有三个奇数长度的回文串，也即
$d_1[3]=3$： $$ a\ \overbrace{b\ a\ \underset{s_3}{b}\ a\ b}^{d_1[3]=3}\ c $$ 字符串
$s=\mathtt{cbaabd}$ 以 $s[3]=a$ 为中心有两个偶数长度的回文串，也即 $d_2[3]=2$： $$ c\
\overbrace{b\ a\ \underset{s_3}{a}\ b}^{d_2[3]=2}\ d $$ 因此关键思路是，如果以某个位置 i 为中
心，我们有一个长度为 l 的回文串，那么我们有以 i 为中心的长度为 $l-2$，$l-4$，等等的回文串。所
以 $d_1[i]$ 和 $d_2[i]$ 两个数组已经足够表示字符串中所有子回文串的信息。

一个令人惊讶的事实是，存在一个复杂度为线性并且足够简单的算法计算上述两个“回文性质数组”
$d_1[]$ 和 $d_2[]$。在这篇文章中我们将详细地描述该算法。

解法

总的来说，该问题具有多种解法：应用字符串哈希，该问题可在 $O(n\log n)$ 时间内解决，而使用后缀数
组和快速 LCA 该问题可在 $O(n)$ 时间内解决。

但是这里描述的算法 压倒性 地简单，并且在时间和空间复杂度上具有更小的常数。该算法由 Glenn K.
Manacher 在 1975 年提出。

朴素算法

为了避免在之后的叙述中出现歧义，这里我们指出什么是“朴素算法”。

该算法通过下述方式工作，对每个中心位置 i，在比较一对对应字符后，只要可能，该算法便尝试将答案
加 1。

该算法是比较慢的：它只能在 $O(n^2)$ 的时间内计算答案。

该朴素算法的实现如下：

vector<int> d1(n), d2(n);

Last
update:
2020/10/02
14:00

2020-2021:teams:legal_string:lgwza:manacher_
算法

https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:manacher_%E7%AE%97%E6%B3%95&rev=1601618403

https://wiki.cvbbacm.com/ Printed on 2026/01/14 06:52

for (int i = 0; i < n; i++) {
 d1[i] = 1;
 while (0 <= i - d1[i] && i + d1[i] < n && s[i - d1[i]] == s[i + d1[i]]) {
 d1[i]++;
 }

 d2[i] = 0;
 while (0 <= i - d2[i] - 1 && i + d2[i] < n &&
 s[i - d2[i] - 1] == s[i + d2[i]]) {
 d2[i]++;
 }
}

From:
https://wiki.cvbbacm.com/ - CVBB ACM Team

Permanent link:
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:manacher_%E7%AE%97%E6%B3%95&rev=1601618403

Last update: 2020/10/02 14:00

https://wiki.cvbbacm.com/
https://wiki.cvbbacm.com/doku.php?id=2020-2021:teams:legal_string:lgwza:manacher_%E7%AE%97%E6%B3%95&rev=1601618403

	Manacher 算法
	描述
	更进一步的描述
	解法
	朴素算法

